期刊文献+
共找到204,845篇文章
< 1 2 250 >
每页显示 20 50 100
GmSTF accumulation mediated by DELLA protein GmRGAs contributes to coordinating light and gibberellin signaling to reduce plant height in soybean 被引量:1
1
作者 Zhuang Li Qichao Tu +7 位作者 Xiangguang Lyu Qican Cheng Ronghuan Ji Chao Qin Jun Liu Bin Liu Hongyu Li Tao Zhao 《The Crop Journal》 SCIE CSCD 2024年第2期432-442,共11页
Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate... Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate various environmental and hormonal signals to regulate plant growth and development in Arabidopsis.We examined the role of two DELLA proteins,GmRGAa and GmRGAb,in soybean plant height control.Knockout of these proteins led to longer internodes and increased plant height,primarily by increasing cell elongation.GmRGAs functioned under different light conditions,including red,blue,and far-red light,to repress plant height.Interaction studies revealed that GmRGAs interacted with the blue light receptor GmCRY1b.Consistent with this,GmCRY1b partially regulated plant height via GmRGAs.Additionally,DELLA proteins were found to stabilize the protein GmSTF1/2,a key positive regulator of photomorphogenesis.This stabilization led to increased transcription of GmGA2ox-7b and subsequent reduction in plant height.This study enhances our understanding of DELLA-mediated plant height control,offering Gmrgaab mutants for soybean structure and yield optimization. 展开更多
关键词 DELLA protein GmRGAs GmSTFs Plant height soyBEAN
下载PDF
Emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate obtained by Corolase PP under high hydrostatic pressure 被引量:1
2
作者 Haining Guan Chunmei Feng +3 位作者 Min Ren Xiaojun Xu Dengyong Liu Xiaoqin Diao 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1271-1278,共8页
Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydro... Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydrostatic pressure(HHP)treatment has attracted much interest and has been used in several studies on protein modification.Hence,the study aimed to investigate the effects of enzymatic hydrolysis by Corolase PP under different pressure treatments(0.1,100,200,and 300 MPa for 1-5 h at 50℃)on the emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate(SPIH).As observed,the hydrolysate obtained at 200 MPa for 4 h had the highest emulsifying activity index(47.49 m^(2)/g)and emulsifying stability index(92.98%),and it had higher antioxidant activities(44.77%DPPH free radical scavenging activity,31.12%superoxide anion radical scavenging activity,and 61.50%copper ion chelating activity).At the same time,the enhancement of emulsion stability was related to the increase of zeta potential and the decrease of mean particle size.In addition,the hydrolysate obtained at 200 MPa for 4 h had a lower bitterness value and showed better palatability.This study has a broad application prospect in developing food ingredients and healthy foods. 展开更多
关键词 soybean protein isolate High hydrostatic pressure EMULSIFICATION ANTIOXIDANT Bitter taste
下载PDF
Effects of galactooligosaccharide glycation on the functional properties of soy protein isolate and its application in noodles
3
作者 Meiyue Wang Guanhao Bu +3 位作者 Yufei Xing Mengke Ren Yang Wang Yijing Xie 《Grain & Oil Science and Technology》 CAS 2024年第3期159-167,共9页
Soybean protein has high nutritional value, but its functional properties are easily affected by external factors,which limits its application in food industry. In the study, soybean protein isolate(SPI) was modified ... Soybean protein has high nutritional value, but its functional properties are easily affected by external factors,which limits its application in food industry. In the study, soybean protein isolate(SPI) was modified by dry heat glycation of galactooligosaccharides(GOS). The gel properties, antioxidant properties and structural changes of SPI-GOS conjugates were investigated. The application of SPI-GOS conjugates in noodles was also explored. The results observed that the glycation degree of SPI increased with the increasing reaction time. SDS-PAGE and spectral analysis showed the changes of spatial conformation of SPI after glycation. The antioxidant activity of SPI increased after glycation and DPPH radical scavenging activity of SPI-GOS peaked at 48 h of reaction. The hardness, elasticity and resilience of soybean protein gel reached their relative maximum at 48 h, 48 h and 12 h of glycation reaction, respectively. Moreover, the appropriate addition of glycated SPI improved the quality of noodles. The noodles with 4% addition of SPI-GOS had higher hardness, elasticity and tensile properties. This study will provide an effective method to modify soybean protein and expand the use of soybean protein in food industry. 展开更多
关键词 soy protein isolate Glycation GALACTOOLIGOSACCHARIDE Functional properties NOODLES
下载PDF
Protein arginine methyltransferase-6 regulates heterogeneous nuclear ribonucleoprotein-F expression and is a potential target for the treatment of neuropathic pain
4
作者 Xiaoyu Zhang Yuqi Liu +6 位作者 Fangxia Xu Chengcheng Zhou Kaimei Lu Bin Fang Lijuan Wang Lina Huang Zifeng Xu 《Neural Regeneration Research》 SCIE CAS 2025年第9期2682-2696,共15页
Protein arginine methyltransferase-6 participates in a range of biological functions,particularly RNA processing,transcription,chromatin remodeling,and endosomal trafficking.However,it remains unclear whether protein ... Protein arginine methyltransferase-6 participates in a range of biological functions,particularly RNA processing,transcription,chromatin remodeling,and endosomal trafficking.However,it remains unclear whether protein arginine methyl transferase-6 modifies neuropathic pain and,if so,what the mechanisms of this effect.In this study,protein arginine methyltransferase-6 expression levels and its effect on neuropathic pain were investigated in the spared nerve injury model,chronic constriction injury model and bone cancer pain model,using immunohistochemistry,western blotting,immunoprecipitation,and label-free proteomic analysis.The results showed that protein arginine methyltransferase-6 mostly co-localized withβ-tubulinⅢin the dorsal root ganglion,and that its expression decreased following spared nerve injury,chronic constriction injury and bone cancer pain.In addition,PRMT6 knockout(Prmt6~(-/-))mice exhibited pain hypersensitivity.Furthermore,the development of spared nerve injury-induced hypersensitivity to mechanical pain was attenuated by blocking the decrease in protein arginine methyltransferase-6 expression.Moreover,when protein arginine methyltransferase-6 expression was downregulated in the dorsal root ganglion in mice without spared nerve injury,increased levels of phosphorylated extracellular signal-regulated kinases were observed in the ipsilateral dorsal horn,and the response to mechanical stimuli was enhanced.Mechanistically,protein arginine methyltransferase-6 appeared to contribute to spared nerve injury-induced neuropathic pain by regulating the expression of heterogeneous nuclear ribonucleoprotein-F.Additionally,protein arginine methyltransfe rase-6-mediated modulation of hete rogeneous nuclear ribonucleoprotein-F expression required amino atids 319 to 388,but not classical H3R2 methylation.These findings indicated that protein arginine methyltransferase-6 is a potential therapeutic target fo r the treatment of peripheral neuro pathic pain. 展开更多
关键词 dorsal root ganglion heterogeneous nuclear ribonucleoprotein F neuropathic pain protein arginine methyltransferase-6 sensory neurons
下载PDF
The Role of Metal Ions in Protein and Fatty Acids Biosynthesis in Soybean under Micronutrients Application to Soil
5
作者 Mudlagiri B. Goli Pande Manju +2 位作者 Kibet Daniel Nacer Bellaloui Daniele De Wrachien 《Agricultural Sciences》 2018年第6期741-749,共9页
The present study is part of our ongoing investigation to study the role of trace elements on soybean seed composition (protein, oil, and fatty acids). This study was conducted to study the effects of five trace eleme... The present study is part of our ongoing investigation to study the role of trace elements on soybean seed composition (protein, oil, and fatty acids). This study was conducted to study the effects of five trace elements (Mn, Cu, Zn, Mo, B). The treatments of Mn, Cu, Zn, Mo, and B were chlorides, except Mo as oxide, and B as boric acid. The treatments were Mn, Cu, Zn, Mo, and B alone and in combination with the chelating agent citric acid (CA), for example Mn + CA, Cu + CA, and Zn + CA. Soybean cultivar (Bolivar with maturity group V) was grown in a repeated greenhouse experiment in a randomized complete block design. The compounds were applied to three-week-old soybean plants at V3 (vegetative) and at R3 (beginning of seed-pod initiation) stages. The plants were allowed to grow until maturity under greenhouse conditions. The harvested seeds were analyzed for mineral, protein, and fatty acid contents. Results showed that Mn, Cu, and B treatments increased seed protein, while Zn, Mo, Cu + CA, and B + CA decreased the protein. Treatments of Zn, Mo, CA, Cu + CA, Zn + CA, Mo + CA, and B + CA increased the oil. Treatments of Mn and Cu decreased the oil. The Cu and B treatments increased oleic acid by 8.0% and 7.4%, respectively for Cu and B. Treatments of Mn, Mo, CA, and Mn + CA, Cu + CA, Zn + CA, Mo + CA, and B + CA decreased oleic acid by 0.6% to 14.4%. Treatments of Cu, Zn, Mo, B, CA, Mn and their combination with CA increased linoleic acid by 1.3% to 6.5%. Our goal was to identify the trace elements that would make desirable alteration in the seed composition qualities. 展开更多
关键词 soyBEAN Cu Mn Zn Mo and B Citric Acid (CA) protein Oil and FATTY ACIDS
下载PDF
Exploring the interaction between the gut microbiota and cyclic adenosine monophosphate-protein kinase A signaling pathway:a potential therapeutic approach for neurodegenerative diseases
6
作者 Fengcheng Deng Dan Yang +6 位作者 Lingxi Qing Yifei Chen Jilian Zou Meiling Jia Qian Wang Runda Jiang Lihua Huang 《Neural Regeneration Research》 SCIE CAS 2025年第11期3095-3112,共18页
The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enh... The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases. 展开更多
关键词 cyclic adenosine monophosphate emotional disorders gut microbiota neurodegenerative diseases neurological diseases protein kinase A reciprocal regulation signaling pathway STRATEGY THERAPIES
下载PDF
Spastin and alsin protein interactome analyses begin to reveal key canonical pathways and suggest novel druggable targets
7
作者 Benjamin R.Helmold Angela Ahrens +1 位作者 Zachary Fitzgerald P.Hande Ozdinler 《Neural Regeneration Research》 SCIE CAS 2025年第3期725-739,共15页
Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understan... Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understanding the underlying disease-causing mechanisms and building solutions that have implications for a broad spectrum of patients. One potential solution is to develop personalized medicine approaches based on strategies that target the most prevalent cellular events that are perturbed in patients. Especially in patients with a known genetic mutation, it may be possible to understand how these mutations contribute to problems that lead to neurodegeneration. Protein–protein interaction analyses offer great advantages for revealing how proteins interact, which cellular events are primarily involved in these interactions, and how they become affected when key genes are mutated in patients. This line of investigation also suggests novel druggable targets for patients with different mutations. Here, we focus on alsin and spastin, two proteins that are identified as “causative” for amyotrophic lateral sclerosis and hereditary spastic paraplegia, respectively, when mutated. Our review analyzes the protein interactome for alsin and spastin, the canonical pathways that are primarily important for each protein domain, as well as compounds that are either Food and Drug Administration–approved or are in active clinical trials concerning the affected cellular pathways. This line of research begins to pave the way for personalized medicine approaches that are desperately needed for rare neurodegenerative diseases that are complex and heterogeneous. 展开更多
关键词 ALS2 alsin amyotrophic lateral sclerosis hereditary spastic paraplegia neurodegenerative diseases personalized medicine precision medicine protein interactome protein-protein interactions SPAST SPASTIN
下载PDF
AAV mediated carboxyl terminus of Hsp70 interacting protein overexpression mitigates the cognitive and pathological phenotypes of APP/PS1 mice
8
作者 Zhengwei Hu Jing Yang +7 位作者 Shuo Zhang Mengjie Li Chunyan Zuo Chengyuan Mao Zhongxian Zhang Mibo Tang Changhe Shi Yuming Xu 《Neural Regeneration Research》 SCIE CAS 2025年第1期253-264,共12页
The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed... The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease. 展开更多
关键词 adeno-associated virus Alzheimer’s disease APP/PS1 mice carboxyl terminus of Hsp70 interacting protein gene therapy
下载PDF
Regulator of G protein signaling 6 mediates exercise-induced recovery of hippocampal neurogenesis,learning,and memory in a mouse model of Alzheimer’s disease
9
作者 Mackenzie M.Spicer Jianqi Yang +5 位作者 Daniel Fu Alison N.DeVore Marisol Lauffer Nilufer S.Atasoy Deniz Atasoy Rory A.Fisher 《Neural Regeneration Research》 SCIE CAS 2025年第10期2969-2981,共13页
Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rode... Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer’s disease.However,the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer’s disease are poorly understood.Recently,regulator of G protein signaling 6(RGS6)was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice.Here,we generated novel RGS6fl/fl;APP_(SWE) mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer’s disease mouse model.We found that voluntary running in APP_(SWE) mice restored their hippocampal cognitive impairments to that of control mice.This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells,which also abolished running-mediated increases in adult hippocampal neurogenesis.Adult hippocampal neurogenesis was reduced in sedentary APP_(SWE) mice versus control mice,with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells.RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer’s disease with significant loss of these RGS6-expressing neurons.Thus,RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP_(SWE) mice,identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer’s disease. 展开更多
关键词 adult hippocampal neurogenesis Alzheimer’s disease dentate gyrus EXERCISE learning/memory neural precursor cells regulator of G protein signaling 6(RGS6)
下载PDF
AAV-mediated expression of p65shRNA and bone morphogenetic protein 4 synergistically enhances chondrocyte regeneration
10
作者 Yu Yangyi Song Zhuoyue +2 位作者 Lian Qiang Ding Kang Li Guangheng 《中国组织工程研究》 CAS 北大核心 2025年第17期3537-3547,共11页
BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene ma... BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair. 展开更多
关键词 OSTEOARTHRITIS adeno-associated virus bone morphogenetic protein 4 p65-short hairpin RNA gene therapy short hairpin RNA transforming growth factor-β1 extracellular matrix articular cartilage chondrocytes.
下载PDF
Analyses of Protein and Oil of Maize Offsprings Plants Introducing Soybean DNA 被引量:8
11
作者 张慧英 田夏红 +1 位作者 冯锐 刘爱花 《Agricultural Science & Technology》 CAS 2008年第6期74-77,共4页
[Objective] The experiment was aimed to explore character variation between different families after DNA introduction and select variant plants with good stability. [Method] The method of pollen-tube-pathway was used ... [Objective] The experiment was aimed to explore character variation between different families after DNA introduction and select variant plants with good stability. [Method] The method of pollen-tube-pathway was used to introduce total DNA of soybean into normal maize inbred line 7313 for selecting generation by generation. When field characters of maize, grain colors, grain traits and panicle axis colors were stable, the crude protein, gliadin, glutelin and oil content of grains which were selected from variant strains were detected and compared. [Result] The grain crude protein, gliadin, glutelin and oil content of line 26h-4-3 were significantly different from these of control treatment. The increments of D3 and D4 generation were 10.34% and 26.70%, 6.58% and 6.28%, 15.09% and 70.34%, 55.82% and 51.52% respectively. All indexes of line 26h-3-1 were also higher than these of control treatment and the increments of D3 and D4 generation were 5.67% and 21.63%,1.91% and 2.31%, 10.85% and 62.27%,22.49% and 9.67%. [Conclusion] The crude protein, gliadin, glutelin and oil content of variant line 26h-4-3 and 26h-3-1 were stable, so variant line 26h-4-3 and 26h-3-1 were excellent variant strains which satisfied the requirement of high protein breeding. 展开更多
关键词 soyBEAN DNA Method of pollen-tube-pathway MAIZE INBRED line protein OIL
下载PDF
Study on Spatial-temporal Dynamics of Bt Toxic Protein Expression in Insect-resistant Transgenic Cotton and Its Degradation in Soil 被引量:1
12
作者 张益文 王连荣 +3 位作者 张连成 张军 籍新波 王进茂 《Agricultural Science & Technology》 CAS 2012年第7期1399-1402,1436,共5页
[Objective] This study aimed to investigate the spatial-temporal dynamics of Bt toxic protein expression in insect-resistant transgenic cotton and its degradation in soil. [Method] Btcry1Ac toxic protein expression in... [Objective] This study aimed to investigate the spatial-temporal dynamics of Bt toxic protein expression in insect-resistant transgenic cotton and its degradation in soil. [Method] Btcry1Ac toxic protein expression in roots, stems and leaves of transgenic cotton Guoshen GK45 at different developmental stages and the annual average content of BtCry1Ac toxin protein in the topsoil, rhizosphere soil and following cotton-growing area were explored and analyzed by using enzyme linked immuno sorbed assay (ELISA). [Result] The content of exogenous BtCry1Ac toxin protein decreased during the growth process of insect-resistant transgenic cotton; to be specific, the content of BtCry1Ac toxin protein in cotton stems and leaves decreased more slowly and always maintained a high level, while that in roots decreased rapidly and reached a minimum level to the following plant growth and development stage. BtCry1Ac toxin protein was detected in topsoil of both non-transgenic and transgenic cotton-growing areas, and the content of BtCry1Ac toxin protein increased in topsoil of following cotton-growing area, which was very low in rhizosphere soil. [Conclusion] Determination of Btcry1Ac toxic protein provides scientific basis for the risk assessment of the cultivation of genetically modified crops and the safety evaluation of soil ecosystem. 展开更多
关键词 TRANSGENIC BT COTTON TOXIN protein Soil MICROORGANISM Safety evaluation
下载PDF
SOI晶体管和电路的瞬时电离辐射效应研究
13
作者 杜川华 段丙皇 +1 位作者 熊涔 曾超 《核技术》 EI CAS CSCD 北大核心 2024年第4期66-72,共7页
基于全介质隔离的绝缘硅(Silicon-on-insulator,SOI)器件与体硅器件的瞬时电离辐射效应存在差异,采用1 064 nm/12 ns激光装置开展了三种SOI晶体管的激光辐照试验,测试了不同激光能量下的晶体管光电流;采用脉冲γ射线辐射源开展了SOI集... 基于全介质隔离的绝缘硅(Silicon-on-insulator,SOI)器件与体硅器件的瞬时电离辐射效应存在差异,采用1 064 nm/12 ns激光装置开展了三种SOI晶体管的激光辐照试验,测试了不同激光能量下的晶体管光电流;采用脉冲γ射线辐射源开展了SOI集成电路的瞬时γ剂量率辐射试验,测试了不同剂量率条件下的电路功能、电参数和触发器链状态。研究表明:在相同激光能量条件和相同特征尺寸条件下,SOI晶体管的光电流峰值约为体硅晶体管的3.5%;SOI集成电路在1.0×10^(9)~4.2×10^(11) rad(Si)·s^(-1)的试验剂量率范围内无闭锁效应,但存在显著的翻转效应,表现为功能短暂中断、电流和电压波动以及大量触发器状态错误。翻转效应的主要原因包括晶体管本身的翻转和印刷电路板(Printed Circuit Board,PCB)板级电路的电压波动。 展开更多
关键词 SOI晶体管 微控制器 瞬时电离辐射效应 光电流
下载PDF
一种注入增强型快速SOI-LIGBT新结构研究
14
作者 黄磊 李健根 +2 位作者 陆泽灼 俞齐声 陈文锁 《微电子学》 CAS 北大核心 2024年第2期277-281,共5页
薄顶层硅SOI(Silicon on Insulator)横向绝缘栅双极型晶体管(Lateral Insulated-Gate Bipolar Transistor, LIGBT)的正向饱和电压较高,引入旨在减小关断态拖尾电流的集电极短路结构后,正向饱和电压进一步增大。提出了一种注入增强型(Inj... 薄顶层硅SOI(Silicon on Insulator)横向绝缘栅双极型晶体管(Lateral Insulated-Gate Bipolar Transistor, LIGBT)的正向饱和电压较高,引入旨在减小关断态拖尾电流的集电极短路结构后,正向饱和电压进一步增大。提出了一种注入增强型(Injection Enhancement, IE)快速LIGBT新结构器件(F-IE-LIGBT),并对其工作机理进行了理论分析和模拟仿真验证。该新结构F-IE-LIGBT器件整体构建在薄顶层硅SOI衬底材料上,其集电极采用注入增强结构和电势控制结构设计。器件及电路联合模拟仿真说明:新结构F-IE-LIGBT器件在获得较小正向饱和电压的同时,减小了关断拖尾电流,实现了快速关断特性。新结构F-IE-LIGBT器件非常适用于SOI基高压功率集成电路。 展开更多
关键词 SOI 横向绝缘栅双极型晶体管 快速关断 拖尾电流 正向饱和电压
下载PDF
SOI高压LDMOS器件氧化层抗总电离剂量辐射效应研究
15
作者 王永维 黄柯月 +4 位作者 王芳 温恒娟 陈浪涛 周锌 赵永瑞 《半导体技术》 CAS 北大核心 2024年第8期758-766,共9页
绝缘体上硅(SOI)高压横向扩散金属氧化物半导体(LDMOS)器件是高压集成电路的核心器件,对其进行了总电离剂量(TID)辐射效应研究。利用仿真软件研究了器件栅氧化层、场氧化层和埋氧化层辐射陷阱电荷对电场和载流子分布的调制作用,栅氧化... 绝缘体上硅(SOI)高压横向扩散金属氧化物半导体(LDMOS)器件是高压集成电路的核心器件,对其进行了总电离剂量(TID)辐射效应研究。利用仿真软件研究了器件栅氧化层、场氧化层和埋氧化层辐射陷阱电荷对电场和载流子分布的调制作用,栅氧化层辐射陷阱电荷主要作用于器件沟道区,而场氧化层和埋氧化层辐射陷阱电荷则主要作用于器件漂移区;辐射陷阱电荷在器件内部感生出的镜像电荷改变了器件原有的电场和载流子分布,从而导致器件阈值电压、击穿电压和导通电阻等参数的退化。对80 V SOI高压LDMOS器件进行了总电离剂量辐射实验,结果表明在ON态和OFF态下随着辐射剂量的增加器件性能逐步衰退,当累积辐射剂量为200 krad(Si)时,器件的击穿电压大于80 V,阈值电压漂移为0.3 V,器件抗总电离剂量辐射能力大于200 krad(Si)。 展开更多
关键词 辐射电荷 总电离剂量(TID)辐射效应 绝缘体上硅(SOI) 横向扩散金属氧化物半导体(LDMOS) 击穿电压 导通电流
下载PDF
100 V SOI厚栅氧LDMOS器件设计与优化
16
作者 王永维 黄柯月 +2 位作者 温恒娟 陈浪涛 周锌 《通讯世界》 2024年第7期1-3,共3页
基于高压模拟开关需求,对100 V绝缘体上硅(SOI)厚栅氧横向扩散金属氧化物半导体(LDMOS)器件开展研究。利用仿真软件,研究了该LDMOS器件的结构参数,包括漂移区长度、漂移区掺杂剂量、多晶硅栅场板长度对LDMOS器件击穿电压的影响。采用沟... 基于高压模拟开关需求,对100 V绝缘体上硅(SOI)厚栅氧横向扩散金属氧化物半导体(LDMOS)器件开展研究。利用仿真软件,研究了该LDMOS器件的结构参数,包括漂移区长度、漂移区掺杂剂量、多晶硅栅场板长度对LDMOS器件击穿电压的影响。采用沟道离子补偿注入的方法,通过控制沟道区调整沟道区硼离子注入剂量,调节器件的阈值电压,同时通过优化N阱区(N-well)注入窗口长度改善器件的饱和电流。 展开更多
关键词 SOI LDMOS 绝缘体上硅 功率器件 击穿电压 阈值电压
下载PDF
Calcium-binding ability of soy protein hydrolysates 被引量:15
17
作者 Xiao Lan Bao Mei Song +2 位作者 Jing Zhang Yang Chen Shun Tang Guo 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第9期1115-1118,共4页
This present study investigated the ability of various soy protein hydrolysates (SPHs) in binding calcium. It was demonstrated that the amount of Ca-bound depended greatly on the SPHs obtained using different protease... This present study investigated the ability of various soy protein hydrolysates (SPHs) in binding calcium. It was demonstrated that the amount of Ca-bound depended greatly on the SPHs obtained using different proteases, which included: neutrase, flavourzyme, protease M and pepsin. The maximum level of Ca-bound (66.9 mg/g) occurred when protease M was used to hydrolyze soy protein. Peptide fragments exhibiting high Ca-binding capacity had molecular weights of either 14.4 or 8–9 kDa. The level of Ca-bound increased linearly with the increment of carboxyl content in SPHs, and further deamidation on SPHs from protease M improved Ca-binding of the hydrolysate. 展开更多
关键词 soybean protein hydrolysates PROTEASE CALCIUM Binding effect
下载PDF
基于0.15μm SOI工艺的耐高温短沟器件设计与实现
18
作者 顾祥 张庆东 +2 位作者 纪旭明 李金航 常瑞恒 《固体电子学研究与进展》 CAS 2024年第3期258-263,共6页
绝缘体上硅(Silicon on insulator,SOI)技术在200~400℃高温器件和集成电路方面有着广泛的应用前景,但对于沟道长度≤0.18μm的短沟道器件在200℃以上的高温下阈值电压漂移量达40%以上,漏电流达μA级,无法满足电路设计要求。本文研究了... 绝缘体上硅(Silicon on insulator,SOI)技术在200~400℃高温器件和集成电路方面有着广泛的应用前景,但对于沟道长度≤0.18μm的短沟道器件在200℃以上的高温下阈值电压漂移量达40%以上,漏电流达μA级,无法满足电路设计要求。本文研究了基于0.15μm SOI工艺的1.5 V MOS器件电特性在高温下的退化机理和抑制方法,通过增加栅氧厚度、降低阱浓度、调整轻掺杂漏离子注入工艺等优化方法,实现了一种性能良好的短沟道高温SOI CMOS器件,在25~250℃温度范围内,该器件阈值电压漂移量<30%,饱和电流漂移量<15%,漏电流<1 nA/μm。此外采用仿真的方法分析了器件在高温下的漏区电势和电场的变化规律,将栅诱导漏极泄漏电流效应与器件高温漏电流关联起来,从而定性地解释了SOI短沟道器件高温漏电流退化的机理。 展开更多
关键词 绝缘体上硅 阈值电压 漏电流 短沟道 栅诱导漏极泄漏电流
下载PDF
Soy Protein Isolate Non-Isocyanates Polyurethanes(NIPU)Wood Adhesives 被引量:5
19
作者 Xinyi Chen Antonio Pizzi +3 位作者 Xuedong Xi Xiaojian Zhou Emmanuel Fredon Christine Gerardin 《Journal of Renewable Materials》 SCIE EI 2021年第6期1045-1057,共13页
Soy-protein isolate(SPI)was used to prepare non-isocyanate polyurethane(NIPU)thermosetting adhesives for wood panels by reacting it with dimethyl carbonate(DMC)and hexamethylene diamine.Both linear as well as branched... Soy-protein isolate(SPI)was used to prepare non-isocyanate polyurethane(NIPU)thermosetting adhesives for wood panels by reacting it with dimethyl carbonate(DMC)and hexamethylene diamine.Both linear as well as branched oligomers were obtained and identified,indicating how such oligomer structures could further cross-link to form a hardened network.Unusual structures were observed,namely carbamic acid-derived urethane linkages coupled with lactam structures.The curing of the adhesive was followed by thermomechanical analysis(TMA).It appeared to follow a two stages process:First,at a lower temperature(maximum 130℃),the growth of linear oligomers occurred,finally forming a physically entangled network.This appeared to collapse and disentangle,causing a decrease of MOE,as the temperature increases.This appears to be due to the ever more marked Brownian movements of the linear oligomer chains with the increase of the temperature.Second,chemical cross-linking of the chains appeared to ensue,forming a hardened network.This was shown by the thermomechanical analysis(TMA)showing two distinct MOE maxima peaks,one around 130℃ and the other around 220℃,with a very marked MOE decrease between the two.Plywood panels were prepared and bonded with the SPI-NIPU wood adhesive and the results obtained are presented.The adhesive appeared to pass comfortably the requirements for dry strength of relevant standards,showing to be suitable for interior grade plywood panels.It did not pass the requirements for wet tests.However,addition of 15%of glycerol diglycidyl ether improved the wet tests results but still not enough to satisfy the standards requirements. 展开更多
关键词 Bio-based wood adhesives soy protein isolate non-isocyanate polyurethanes(NIPU) wood panels MALDI ToF
下载PDF
Effect of ionic strength and mixing ratio on complex coacervation of soy protein isolate/Flammulina velutipes polysaccharide 被引量:4
20
作者 Junmiao Zhang Hengjun Du +5 位作者 Ning Ma Lei Zhong Gaoxing Ma Fei Pei Hui Chen Qiuhui Hu 《Food Science and Human Wellness》 SCIE CSCD 2023年第1期183-191,共9页
Soy protein isolate(SPI)is a commercial protein with balanced amino acids,while the poor solubility impedes its use in traditional foods.To overcome the problem,the complex coacervation of SPI/Flammulina velutipes pol... Soy protein isolate(SPI)is a commercial protein with balanced amino acids,while the poor solubility impedes its use in traditional foods.To overcome the problem,the complex coacervation of SPI/Flammulina velutipes polysaccharide(FVP)were investigated.Initial results revealed that the suitable amounts of FVP contributed to reducing the turbidity of SPI solution.Under electrostatic interaction,the formation of SPI/FVP coacervates were spontaneous and went through a nucleation and growth process.Low salt concentration(C_(NaCl)=10,50 mmol/L)led to an increase in the critical pH values(pHc,pHφ1)while the critical pH values decreased when C_(NaCl)≥100 mmol/L.The concentration of NaCl ions increased the content ofα-helix.With the increase of FVP,the critical pH values decreased and the content ofβ-sheet increased through electrostatic interaction.At SPI/FVP ratio of 10:1 and 15:1,the complex coacervation of SPI/FVP were saturated,and the coacervates had the same storage modulus value.SPI/FVP coacervates exhibited solid-like properties and presented the strongest storage modulus at C_(NaCl)=50 mmol/L.The optimal pH,SPI/FVP ratio and NaCl concentration of complex coacervation were collected,and the coacervates demonstrated a valuable application potential to protect and deliver bioactives and food ingredients. 展开更多
关键词 soy protein isolate Flammulina velutipes polysaccharide Electrostatic interaction Complex coavervation Storage modulus
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部