The CuCr25 and CuCr25Te contact materials were manufactured by vacuum casting process.The microstructures of two alloys were observed by metallographic microscope,the electrical conductivity,density and hardness were ...The CuCr25 and CuCr25Te contact materials were manufactured by vacuum casting process.The microstructures of two alloys were observed by metallographic microscope,the electrical conductivity,density and hardness were measured.The tensile test was done by universal testing machine while the fractography was observed by SEM,the breaking current tests were carried out in Weil Synthetic Circuit with arc-igniting branch in Xi’an Jiaotong University.The results show that the microstructures and physical parameters change after adding Te element.The tensile strength decreases and the toughness turns bad,which is propitious to improve the anti-welding property.But the breaking current capacity of CuCr25Te alloy is inferior to CuCr25 alloy.Thus,adding Te element has both advantages and disadvantages on main properties of CuCr contact material.展开更多
CuCr25W1Ni2 alloy was prepared by means of vacuum induction melting (VIM). A series of Cu/Cr alloys with different compositions (mass fraction, 25%~75%) and Cr grain sizes (up to 150 μm) were investigated for their ...CuCr25W1Ni2 alloy was prepared by means of vacuum induction melting (VIM). A series of Cu/Cr alloys with different compositions (mass fraction, 25%~75%) and Cr grain sizes (up to 150 μm) were investigated for their differences in physical properties and breakdown voltage. The influence of alloy elements and microstructure on the performance of CuCr25W1Ni2 alloy was also discussed. Experimental results show that the chromium phase is strengthened and its size is minimized by the addition of tungsten powder. After electrical breakdown, very fine tungsten particles in the melt layer form the external nuclei in the solidification process. The microstructure of surface melt layer of CuCr25W1Ni2 alloy is much flatter. It can notably improve the dielectric strength. On the other hand, the nickel can enhance the mutual solubility of copper and chromium, and the whole alloy is strengthened. [展开更多
mg-Yb203 electrical contact materials were fabricated by spark plasma sintefing (SPS). The effects of silver powder particle size on the microstructure and properties of the samples were investigated. The surface mo...mg-Yb203 electrical contact materials were fabricated by spark plasma sintefing (SPS). The effects of silver powder particle size on the microstructure and properties of the samples were investigated. The surface morphologies of the sintered samples were examined by optical microscope (OM), and the fracture morphologies were observed by scanning electron microscopy (SEM). The physical and mechanical properties such as density, electrical resistivity, microhardness, and tensile strength were also tested. The results show that the silver powder particle size has evident effects on the sintered materials. Comparing with coarse silver powder (5 ktm), homogeneous and fme microstmcture was obtained by fine silver powder (_〈0.5-1am). At the same time, the electrical conductivity, microhardness, and tensile strength of the sin- tered samples with fine silver powder were higher than those of the samples with coarse silver powder. However, silver powder particle size has little influence on the relative densities, which of all samples (both by free and coarse silver powders) is more than 95%. The fracture characteristics are ductile.展开更多
Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a...Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a soft interface material between these two materials.A testing system of high temperature thermal contact resistance based on INSTRON 8874 is established in the present paper,which can achieve 600 C at the interface.Based on this system,the thermal contact resistance between superalloy GH600 material and three-dimensional braid C/C composite material is experimentally investigated,under different interface pressures,interface roughnesses and temperatures,respectively.At the same time,the mechanism of reducing the thermal contact resistance with carbon fiber sheet as interface material is experimentally investigated.Results show that the present testing system is feasible in the experimental research of high temperature thermal contact resistance.展开更多
Constituents of the oxidized surface film on diamond particles reinforced Cu-Cd alloy matrix composite (Cp/Cu-Cd) were investigated by XPS. The results show that Cu2O is the main constituent when the oxidized film i...Constituents of the oxidized surface film on diamond particles reinforced Cu-Cd alloy matrix composite (Cp/Cu-Cd) were investigated by XPS. The results show that Cu2O is the main constituent when the oxidized film is thin; CuO appears only after the film is rather thick. The originally formed oxidized film on the Cp/Cu-Cd is about 10nm in thickness and is mainly composed of Cu2O and Cu. After oxidized at 120℃ over 30h, CuO is detected in the film.展开更多
Ag/SnO2,as a promising and environment-friendly electrical contact material,is widely applied in low-voltage apparatus.But the properties of Ag/SnO2 composites is difficult to improve due to the poor distribution phas...Ag/SnO2,as a promising and environment-friendly electrical contact material,is widely applied in low-voltage apparatus.But the properties of Ag/SnO2 composites is difficult to improve due to the poor distribution phases and difficult component design.In this work,the Ag/SnO2 composites are prepared by selective laser melting.To get better performance,Ag/SnO2 composites with different energy density were studied.The microstructure was observed by field emission scanning electron microscope.In addition,reinforced SnO2 phase was characterized by X-ray diffraction and transmission electron microscope.The results indicated that the microstructure,relative density and hardness of are influenced by energy density,while Ag/SnO2 composites with homogeneous microstructure,high relative density,higher hardness and lower electrical resistivity can be obtained by proper energy density(E?68 J/mm^3).展开更多
In this study, the mechanisms of the anode phenomena and anode erosion with various contact materials were investigated. Arc parameters were calculated, and the anode temperature was predicted with a transient self-co...In this study, the mechanisms of the anode phenomena and anode erosion with various contact materials were investigated. Arc parameters were calculated, and the anode temperature was predicted with a transient self-consistent model. The simulation results predicted a constricted arc column and obvious anode phenomena in Cu–Cr alloy contacts than in W–Cu alloy contacts.This observation could be the reason for the concentrated anode erosion in Cu–Cr alloys. For the contacts made by pure tungsten(W) and W–Cu alloy, the anode temperature increased rapidly because of the low specific heat of W. However, the maximum energy flux from the arc column to the anode surface was lower than in other cases. The simulation results were compared with experimental results.展开更多
The expansion parts and components of non-metallic in devices have become a fait accompli. In the case parts, components of non-metallic are used in atmospheres explosive and may be a potential source of ignition [1]....The expansion parts and components of non-metallic in devices have become a fait accompli. In the case parts, components of non-metallic are used in atmospheres explosive and may be a potential source of ignition [1]. Ignition hazards due to static electricity from the charged non-conductive non-metallic materials are well known [2]. The prevalence protection metal parts and components of anti-corrosion exist in any device equipped with a metal casing. Inherent risks associated services are caused by static electricity. Electrostatic phenomena arise in many situations, in a variety of environments and industries. The occurrence of charge static in many cases unexpected is unwanted and requires the use of expensive preventive measures. Brush discharge and propagating brush discharge (e.g. composite coating about non-conductive electrostatic properties of an isolated base conductive) create explosion hazard in underground endangered by firedamp and/or coal dust [3].展开更多
A study was made of influences of vacuum-baking treatment to SiC particulates on preparing cast Al-martix composite. By means of quadripole mass analyser(QMA), gases absorbed on the surface of SiC particulate have bee...A study was made of influences of vacuum-baking treatment to SiC particulates on preparing cast Al-martix composite. By means of quadripole mass analyser(QMA), gases absorbed on the surface of SiC particulate have been investigated, it is found that gases and pollutants absorbed on the surface prohibit SiC particulates from uniformly dispersing in the alloy melt.展开更多
Triggering characteristics of triggered vacuum switch (TVS), including the discharge delay time, delay jitter, range of operational voltage and peak of pulsed current, are investigated. Both structure and experiment...Triggering characteristics of triggered vacuum switch (TVS), including the discharge delay time, delay jitter, range of operational voltage and peak of pulsed current, are investigated. Both structure and experimental circuit of TVS are presented. The results indicate that TVS, as a surface flashover triggering device with high dielectric permittivity material, is with excellent triggering characteristics. When the hold-off voltage reaches 120 kV, the minimum operational voltage is 1.3 kV, and the minimum discharge delay time and jitter are 100 ns and ±10 ns, respectively. The peak current is up to 240 kA when the operational voltage reaches 100 kV. TVS can well satisfy the main demands of high voltage and current applications, and can also be used under a multi-crowbar circuit.展开更多
The atom (Ag,Cu) diffusion behavior and the effect of technology on the interface of rolled Ag/Cu composite contact were investigated. The concentration of Ag and Cu atoms near the interface was determined with electr...The atom (Ag,Cu) diffusion behavior and the effect of technology on the interface of rolled Ag/Cu composite contact were investigated. The concentration of Ag and Cu atoms near the interface was determined with electron probe. The bonding strength of composite interface was tested and the fracture in tensile sample was observed by SEM. The results show that there was inter diffusion of Ag and Cu atoms on the interface, which formed compact layer with high bonding strength of 98 MPa. The practical application proved that the Ag/Cu composite interface is reliable.展开更多
CuCr alloys are important contact materials, but all conventional preparing methods have disadvantages and mismatch the requirements for mass production and high properties. The CuCr25 alloys were prepared by means of...CuCr alloys are important contact materials, but all conventional preparing methods have disadvantages and mismatch the requirements for mass production and high properties. The CuCr25 alloys were prepared by means of arc smelting in vacuum, and their microstructures, physical properties as well as dielectric strength were investigated. The experimental results show that vacuum arc smelting is an ideal method to produce CuCr25 contact alloys with fine microstructure, low gas content, high density and dielectric strength. Meanwhile, with the high productivity and low cost, CuCr25 contact materials can be produced with mass production through vacuum arc smelting method.展开更多
When interrupting short circuit fault by 40.5-kV vacuum circuit breakers, it is significant to eliminate multiple restrike phenomena, which occur frequently and result in high overvoltage and even interruption failure...When interrupting short circuit fault by 40.5-kV vacuum circuit breakers, it is significant to eliminate multiple restrike phenomena, which occur frequently and result in high overvoltage and even interruption failure. A synthetic circuit that can supply a DC recovery voltage after current zero was used to study multiple restrike phenomena in switching. Some key factors including breaking current, clearance between open contacts, electrode structure and contact material, which may affect restrike characteristics, were studied. Under various clearances, the statistical probability of restrike was obtained. As a result, the best scope of clearance between open contacts was found. The performance of CuCr50/50 and CuCr75/25 material were compared. Two kinds of electrode structures, namely 1/2 coil structure and cup-shaped axial magnetic structure, were tested. After a high-current interruption, conditioning effoct was realized and the probability of restrike decreased.展开更多
文摘The CuCr25 and CuCr25Te contact materials were manufactured by vacuum casting process.The microstructures of two alloys were observed by metallographic microscope,the electrical conductivity,density and hardness were measured.The tensile test was done by universal testing machine while the fractography was observed by SEM,the breaking current tests were carried out in Weil Synthetic Circuit with arc-igniting branch in Xi’an Jiaotong University.The results show that the microstructures and physical parameters change after adding Te element.The tensile strength decreases and the toughness turns bad,which is propitious to improve the anti-welding property.But the breaking current capacity of CuCr25Te alloy is inferior to CuCr25 alloy.Thus,adding Te element has both advantages and disadvantages on main properties of CuCr contact material.
文摘CuCr25W1Ni2 alloy was prepared by means of vacuum induction melting (VIM). A series of Cu/Cr alloys with different compositions (mass fraction, 25%~75%) and Cr grain sizes (up to 150 μm) were investigated for their differences in physical properties and breakdown voltage. The influence of alloy elements and microstructure on the performance of CuCr25W1Ni2 alloy was also discussed. Experimental results show that the chromium phase is strengthened and its size is minimized by the addition of tungsten powder. After electrical breakdown, very fine tungsten particles in the melt layer form the external nuclei in the solidification process. The microstructure of surface melt layer of CuCr25W1Ni2 alloy is much flatter. It can notably improve the dielectric strength. On the other hand, the nickel can enhance the mutual solubility of copper and chromium, and the whole alloy is strengthened. [
文摘mg-Yb203 electrical contact materials were fabricated by spark plasma sintefing (SPS). The effects of silver powder particle size on the microstructure and properties of the samples were investigated. The surface morphologies of the sintered samples were examined by optical microscope (OM), and the fracture morphologies were observed by scanning electron microscopy (SEM). The physical and mechanical properties such as density, electrical resistivity, microhardness, and tensile strength were also tested. The results show that the silver powder particle size has evident effects on the sintered materials. Comparing with coarse silver powder (5 ktm), homogeneous and fme microstmcture was obtained by fine silver powder (_〈0.5-1am). At the same time, the electrical conductivity, microhardness, and tensile strength of the sin- tered samples with fine silver powder were higher than those of the samples with coarse silver powder. However, silver powder particle size has little influence on the relative densities, which of all samples (both by free and coarse silver powders) is more than 95%. The fracture characteristics are ductile.
基金supported by the Fundamental Research Funds for the Central Universities (FRF-BR-10-007A and FRF-AS-09-001A)the National Natural Science Foundation of China (10872104)
文摘Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a soft interface material between these two materials.A testing system of high temperature thermal contact resistance based on INSTRON 8874 is established in the present paper,which can achieve 600 C at the interface.Based on this system,the thermal contact resistance between superalloy GH600 material and three-dimensional braid C/C composite material is experimentally investigated,under different interface pressures,interface roughnesses and temperatures,respectively.At the same time,the mechanism of reducing the thermal contact resistance with carbon fiber sheet as interface material is experimentally investigated.Results show that the present testing system is feasible in the experimental research of high temperature thermal contact resistance.
文摘Constituents of the oxidized surface film on diamond particles reinforced Cu-Cd alloy matrix composite (Cp/Cu-Cd) were investigated by XPS. The results show that Cu2O is the main constituent when the oxidized film is thin; CuO appears only after the film is rather thick. The originally formed oxidized film on the Cp/Cu-Cd is about 10nm in thickness and is mainly composed of Cu2O and Cu. After oxidized at 120℃ over 30h, CuO is detected in the film.
基金sponsored by the Natural Science Foundation of China (Grant nos. 51775208)the Hubei Science Fund for Distinguished Young Scholars (No. 0216110085)+2 种基金the National Key Research and Development Program “Additive Manufacturing and Laser Manufacturing”(No. 2016YFB1100101)Wuhan Morning Light Plan of Youth Science and Technology (No. 0216110066)the Academic frontier youth team at Huazhong University of Science and Technology (HUST)
文摘Ag/SnO2,as a promising and environment-friendly electrical contact material,is widely applied in low-voltage apparatus.But the properties of Ag/SnO2 composites is difficult to improve due to the poor distribution phases and difficult component design.In this work,the Ag/SnO2 composites are prepared by selective laser melting.To get better performance,Ag/SnO2 composites with different energy density were studied.The microstructure was observed by field emission scanning electron microscope.In addition,reinforced SnO2 phase was characterized by X-ray diffraction and transmission electron microscope.The results indicated that the microstructure,relative density and hardness of are influenced by energy density,while Ag/SnO2 composites with homogeneous microstructure,high relative density,higher hardness and lower electrical resistivity can be obtained by proper energy density(E?68 J/mm^3).
基金supported by the Sichuan Science and Technology Program (No. 2024NSFSC0867)National Natural Science Foundation of China (No. 52377157)。
文摘In this study, the mechanisms of the anode phenomena and anode erosion with various contact materials were investigated. Arc parameters were calculated, and the anode temperature was predicted with a transient self-consistent model. The simulation results predicted a constricted arc column and obvious anode phenomena in Cu–Cr alloy contacts than in W–Cu alloy contacts.This observation could be the reason for the concentrated anode erosion in Cu–Cr alloys. For the contacts made by pure tungsten(W) and W–Cu alloy, the anode temperature increased rapidly because of the low specific heat of W. However, the maximum energy flux from the arc column to the anode surface was lower than in other cases. The simulation results were compared with experimental results.
文摘The expansion parts and components of non-metallic in devices have become a fait accompli. In the case parts, components of non-metallic are used in atmospheres explosive and may be a potential source of ignition [1]. Ignition hazards due to static electricity from the charged non-conductive non-metallic materials are well known [2]. The prevalence protection metal parts and components of anti-corrosion exist in any device equipped with a metal casing. Inherent risks associated services are caused by static electricity. Electrostatic phenomena arise in many situations, in a variety of environments and industries. The occurrence of charge static in many cases unexpected is unwanted and requires the use of expensive preventive measures. Brush discharge and propagating brush discharge (e.g. composite coating about non-conductive electrostatic properties of an isolated base conductive) create explosion hazard in underground endangered by firedamp and/or coal dust [3].
文摘A study was made of influences of vacuum-baking treatment to SiC particulates on preparing cast Al-martix composite. By means of quadripole mass analyser(QMA), gases absorbed on the surface of SiC particulate have been investigated, it is found that gases and pollutants absorbed on the surface prohibit SiC particulates from uniformly dispersing in the alloy melt.
基金supported by the New Century Talent Foundation of Ministry of Education of China (NCET-08-0438)
文摘Triggering characteristics of triggered vacuum switch (TVS), including the discharge delay time, delay jitter, range of operational voltage and peak of pulsed current, are investigated. Both structure and experimental circuit of TVS are presented. The results indicate that TVS, as a surface flashover triggering device with high dielectric permittivity material, is with excellent triggering characteristics. When the hold-off voltage reaches 120 kV, the minimum operational voltage is 1.3 kV, and the minimum discharge delay time and jitter are 100 ns and ±10 ns, respectively. The peak current is up to 240 kA when the operational voltage reaches 100 kV. TVS can well satisfy the main demands of high voltage and current applications, and can also be used under a multi-crowbar circuit.
文摘The atom (Ag,Cu) diffusion behavior and the effect of technology on the interface of rolled Ag/Cu composite contact were investigated. The concentration of Ag and Cu atoms near the interface was determined with electron probe. The bonding strength of composite interface was tested and the fracture in tensile sample was observed by SEM. The results show that there was inter diffusion of Ag and Cu atoms on the interface, which formed compact layer with high bonding strength of 98 MPa. The practical application proved that the Ag/Cu composite interface is reliable.
文摘CuCr alloys are important contact materials, but all conventional preparing methods have disadvantages and mismatch the requirements for mass production and high properties. The CuCr25 alloys were prepared by means of arc smelting in vacuum, and their microstructures, physical properties as well as dielectric strength were investigated. The experimental results show that vacuum arc smelting is an ideal method to produce CuCr25 contact alloys with fine microstructure, low gas content, high density and dielectric strength. Meanwhile, with the high productivity and low cost, CuCr25 contact materials can be produced with mass production through vacuum arc smelting method.
文摘When interrupting short circuit fault by 40.5-kV vacuum circuit breakers, it is significant to eliminate multiple restrike phenomena, which occur frequently and result in high overvoltage and even interruption failure. A synthetic circuit that can supply a DC recovery voltage after current zero was used to study multiple restrike phenomena in switching. Some key factors including breaking current, clearance between open contacts, electrode structure and contact material, which may affect restrike characteristics, were studied. Under various clearances, the statistical probability of restrike was obtained. As a result, the best scope of clearance between open contacts was found. The performance of CuCr50/50 and CuCr75/25 material were compared. Two kinds of electrode structures, namely 1/2 coil structure and cup-shaped axial magnetic structure, were tested. After a high-current interruption, conditioning effoct was realized and the probability of restrike decreased.