Readout electronics is developed for a prototype time-of-flight(TOF) ion composition spectrometer for in situ measurement of the mass/charge distributions of major ion species from 200 to 100 ke V/e in space plasma.By...Readout electronics is developed for a prototype time-of-flight(TOF) ion composition spectrometer for in situ measurement of the mass/charge distributions of major ion species from 200 to 100 ke V/e in space plasma.By utilizing a constant fraction discriminator(CFD) and time-to-digital converter(TDC), challenging dynamic range measurements were performed with high time resolution and event rates. CFD was employed to discriminate the TOF signals from the micro-channel plate and channel electron multipliers. TDC based on the combination of counter and OR-gate delay chain was designed in a highreliability flash field programmable gate array. Owing to the non-uniformity of the delay chain, a correction algorithm based on integral nonlinearity compensation was implemented to reduce the time uncertainty. The test results showed that the electronics achieved a low timingerror of < 200 ps in the input range from 35 to 500 m V for the CFD, and a time resolution of ~550 ps with time uncertainty < 180 ps after correction and a time range of6.4 ls for the TDC. The TOF spectrum from an electron beam experiment of the impacting N_2 gas further indicated the good performance of this readout electronic.展开更多
This paper gives a brief review of the research activities on space electronics done in Chinese Academy of Space Technology (CAST), especially in Xi'an Institute of Space Radio Technology (XISRT). XISRT undertakes...This paper gives a brief review of the research activities on space electronics done in Chinese Academy of Space Technology (CAST), especially in Xi'an Institute of Space Radio Technology (XISRT). XISRT undertakes the development and manufacturing of space borne electronic equipment and their relevant ground TT&C in CAST. This paper deals with satellite communication and remote sensing.展开更多
The through-space and through-bond interactions of molecular orbitals in [2,2] paracyclophane are studied by the approved MS-X. method with overlapping atomic-sphere. The calculation results show the through-space in...The through-space and through-bond interactions of molecular orbitals in [2,2] paracyclophane are studied by the approved MS-X. method with overlapping atomic-sphere. The calculation results show the through-space interactions are exponential flareout with increasing of the distance of two orbitals, and.both through-space interactions and through-bond interactions are sizable but those two interactions oppose each other causing the net splitting to be small. Transition-state procedure was used to calculate ionization potentials, the results are in agreement with the PE-spectra.展开更多
The spacecraft for deep space exploration missions will face extreme environments,including cryogenic temperature,intense radiation,wide-range temperature variations and even the combination of conditions mentioned ab...The spacecraft for deep space exploration missions will face extreme environments,including cryogenic temperature,intense radiation,wide-range temperature variations and even the combination of conditions mentioned above.Harsh environments will lead to solder joints degradation or even failure,resulting in damage to onboard electronics.The research activities on high reliability solder joints using in extreme environments can not only reduce the use of onboard protection devices,but effectively improve the overall reliability of spacecraft,which is of great significance to the aviation industry.In this paper,we review the reliability research on SnPb solder alloys,Sn-based lead-free solder alloys and In-based solder alloys in extreme environments,and try to provide some suggestions for the follow-up studies,which focus on solder joint reliability under extreme environments.展开更多
This paper gives the brief view of the electronic control system of SPACE SOLAR TELESCOPE (SST), especially the On Board Data Handling unit (OBDH) on the SST which control the operation of the instrument, acquire data...This paper gives the brief view of the electronic control system of SPACE SOLAR TELESCOPE (SST), especially the On Board Data Handling unit (OBDH) on the SST which control the operation of the instrument, acquire data and make data analysis and storage. In OBDH, the Scientific Data Unit (SDU) is a special unit that requires high speed computer. In this paper gives a brief comparison of two possible choices and discuss selection of electronic parts in the space environment.展开更多
By extending the Levy wavefunction constrained search to Fock Space,one can define a wavefunction constrained search for electron densities in systems having noninteger number of electrons.For pure-state v-representab...By extending the Levy wavefunction constrained search to Fock Space,one can define a wavefunction constrained search for electron densities in systems having noninteger number of electrons.For pure-state v-representable densities,the results are equivalent to what one would obtain with the zero-temperature grand canonical ensemble.In other cases,the wavefunction constrained search in Fock space presents an upper bound to the grand canonical ensemble functional.One advantage of the Fock-space wavefunction constrained search functional over the zero-temperature grand-canonical ensemble constrained search functional is that certain specific excited states(i.e.,those that are not ground-statev-representable) are the stationary points of the Fock-space functional.However,a potential disadvantage of the Fock-space constrained search functional is that it is not convex.展开更多
In electron beam technology, one of the critical focuses of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission,...In electron beam technology, one of the critical focuses of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission, operation environment, and role of the electron beam and the corresponding medium. In this study, a field calculation method is proposed, and the electric field intensity distribution on the electron beam’s cross-section is analyzed. The characteristics of beam diffusion caused by the space charge effect are investigated in simulation, and the obtained data are compared with the experiment. The simulation demonstrated that the cross-sectional electric field distribution is primarily affected by the electron beam current, current density distribution, and electron beam propagation speed.展开更多
We elaborate a quadratic nonlinear theory of plural interactions of growing space charge wave (SCW) harmonics during the development of the two-stream instability in helical relativistic electron beams. It is found ...We elaborate a quadratic nonlinear theory of plural interactions of growing space charge wave (SCW) harmonics during the development of the two-stream instability in helical relativistic electron beams. It is found that in helical two-stream electron beams the growth rate of the two-stream instability increases with the beam entrance angle. An SCW with the broad frequency spectrum, in which higher harmonics have higher amplitudes, forms when the frequency of the first SCW harmonic is much less than the critical frequency of the two-stream instability. For helical electron beams the spectrum expands with the increase of the beam entrance angle. Moreover, we obtain that utilizing helical electron beams in multiharmonic two-stream superheterodyne free-electron lasers leads to the improvement of their amplification characteristics, the frequency spectrum broadening in multiharmonic signal generation mode, and the reduction of the overall system dimensions.展开更多
Irregular phase-space orbits of the electrons are harmful to the electron-beam transport quality and hence deteriorate the performance of a free-electron laser (FEL). In previous literature, it was demonstrated that...Irregular phase-space orbits of the electrons are harmful to the electron-beam transport quality and hence deteriorate the performance of a free-electron laser (FEL). In previous literature, it was demonstrated that the irregularity of the electron phase-space orbits could be caused in several ways, such as varying the wiggler amplitude and inducing sidebands. Based on a Hamiltonian model with a set of self-consistent differential equations, it is shown in this paper that the electron- beam normalized plasma frequency functions not only couple the electron motion with the FEL wave, which results in the evolution of the FEL wave field and a possible power saturation at a large beam current, but also cause the irregularity of the electron phase-space orbits when the normalized plasma frequency has a sufficiently large value, even if the initial energy of the electron is equal to the synchronous energy or the FEL wave does not reach power saturation.展开更多
The space group of PrCo_(12)B_6,compound has been determined using the convergent beam elec- tron diffraction method.The space group is found to be R3m.
Space satellite observations in an electron phase-space hole(electron hole) have shown that bipolar structures are discovered at the parallel cut of parallel electric field, while unipolar structures spring from the p...Space satellite observations in an electron phase-space hole(electron hole) have shown that bipolar structures are discovered at the parallel cut of parallel electric field, while unipolar structures spring from the parallel cut of perpendicular electric field. Particle-in-cell(PIC) simulations have demonstrated that the electron bi-stream instability induces several electron holes during its nonlinear evolution. However, how the unipolar structure of the parallel cut of the perpendicular electric field formed in these electron holes is still an unsolved problem,especially in a strongly magnetized plasma(Ω_e >ω_(pe), where Ω_e is defined as electron gyrofrequency and ω_(pe) is defined as plasma frequency, respectively). In this paper, with two-dimensional(2D) electrostatic PIC simulations, the evolution of the electron two-stream instability with a finite width in strongly magnetized plasma is investigated. Initially, those conditions lead to monochromatic electrostatic waves, and these waves coalesce with each other during their nonlinear evolution. At last, a solitary electrostatic structure is formed. In such an electron hole, a bipolar structure is formed in the parallel cut. of parallel electric field, while a unipolar structure presents in the parallel cut of perpendicular electric field.展开更多
We study the effect of electron-phonon (e-ph) interaction on the elastic and inelastic electronic transport of a nanowire connected to two simple rigid leads within the tight-binding and harmonic approximations. The...We study the effect of electron-phonon (e-ph) interaction on the elastic and inelastic electronic transport of a nanowire connected to two simple rigid leads within the tight-binding and harmonic approximations. The model is constructed using Green's function and multi-channel techniques, taking into account the local and nonlocal e-ph interactions. Then, we examine the model for the gapless (simple chain) and gapped (PA-like nanowire) systems. The results show that the tunneling conductance is improved by the e-ph interaction in both local and nonlocal regimes, while for the resonance conductance, the coherent part mainly decreases and the incoherent part increases. At the corresponding energies which depend on the phonon frequency, two dips in the elastic and two peaks in the inelastic conductance spectra appear. The reason is the absorption of the phonon by the electron in transition into inelastic channels.展开更多
The BETA application-specific integrated circuit(ASIC)is a fully programmable chip designed to amplify,shape and digitize the signal of up to 64 Silicon photomultiplier(SiPM)channels,with a power consumption of approx...The BETA application-specific integrated circuit(ASIC)is a fully programmable chip designed to amplify,shape and digitize the signal of up to 64 Silicon photomultiplier(SiPM)channels,with a power consumption of approximately~1 mW/channel.Owing to its dual-path gain,the BETA chip is capable of resolving single photoelectrons(phes)with a signal-to-noise ratio(SNR)>5 while simultaneously achieving a dynamic range of~4000 phes.Thus,BETA can provide a cost-effective solution for the readout of SiPMs in space missions and other applications with a maximum rate below 10 kHz.In this study,we describe the key characteristics of the BETA ASIC and present an evaluation of the performance of its 16-channel version,which is implemented using 130 nm technology.The ASIC also contains two discriminators that can provide trigger signals with a time jitter down to 400 ps FWHM for 10 phes.The linearity error of the charge gain measurement was less than 2%for a dynamic range as large as 15 bits.展开更多
Numerical solutions to floating plasma potentials for walls emitting secondary elec- trons are obtained for various surface materials. The calculations are made with plasma moment equations and the secondary electron ...Numerical solutions to floating plasma potentials for walls emitting secondary elec- trons are obtained for various surface materials. The calculations are made with plasma moment equations and the secondary electron emission coefficients, which were determined from recent laboratory experiments. The results estimate the wall potentials up to the physical conditions that allow stable plasma sheaths under the space-charge-limited condition. The materials often used in the laboratory, such as aluminum, silicon, boron, molybdenum, silicon dioxide, and alumina, are considered. The minimum wall potential before the onset of space-charge-limited emission is determined by the electron temperatures at which the effective secondary electron emission coefficient integrated over the velocity distributions is about 0.62. The corresponding potential is given by -eφ0 ,- 1.87kBT. The condition for space-charge-limited emission is newly found by numerically searching for all the stable sheaths. The new condition is -eφ0 - 0.95kBT, and this predicts a wall potential that is less negative than the previously found one. Calculation of the power dissipated to the wall for hydrogen plasmas shows that there is a large difference in terms of power dissipation among the considered materials in the temperature range 20-50 eV.展开更多
We developed a cubic non-linear theory describing the dynamics of the multiharmonic spacecharge wave(SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relati...We developed a cubic non-linear theory describing the dynamics of the multiharmonic spacecharge wave(SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relativistic electron beam(REB) parameters. The self-consistent differential equation system for multiharmonic SCW harmonic amplitudes was elaborated in a cubic non-linear approximation. This system considers plural three-wave parametric resonant interactions between wave harmonics and the two-stream instability effect. Different REB parameters such as the input angle with respect to focusing magnetic field, the average relativistic factor value, difference of partial relativistic factors, and plasma frequency of partial beams were investigated regarding their influence on the frequency spectrum width and multiharmonic SCW saturation levels. We suggested ways in which the multiharmonic SCW frequency spectrum widths could be increased in order to use them in multiharmonic two-stream superheterodyne free-electron lasers, with the main purpose of forming a powerful multiharmonic electromagnetic wave.展开更多
The excitation, growing and damping of current instability is an important and vital subject for a lot of studies through its importance in communication for instance and in understanding the nature of space and the i...The excitation, growing and damping of current instability is an important and vital subject for a lot of studies through its importance in communication for instance and in understanding the nature of space and the interpretation of many phenomena in space and astrophysics. Recent analytical and numerical works are presented to describe and investigate the excitation and growing of kinetic electron-ion two streams instability in anisotropic inhomogeneous dusty space plasmas. We elucidated the thermal effects of plasma species on the characteristics of such instability. It is found that the gradient of space plasma temperature, , is a cause of interesting physical phenomena. Besides, different parameters, such as electron to ion temperature ratio , magnetized plasma and dust grains, are also found to play a crucial role in the growth and depression of such instability.展开更多
Radiation belt electron dropouts indicate electron flux decay to the background level during geomagnetic storms,which is commonly attributed to the effects of wave-induced pitch angle scattering and magnetopause shado...Radiation belt electron dropouts indicate electron flux decay to the background level during geomagnetic storms,which is commonly attributed to the effects of wave-induced pitch angle scattering and magnetopause shadowing.To investigate the loss mechanisms of radiation belt electron dropouts triggered by a solar wind dynamic pressure pulse event on 12 September 2014,we comprehensively analyzed the particle and wave measurements from Van Allen Probes.The dropout event was divided into three periods:before the storm,the initial phase of the storm,and the main phase of the storm.The electron pitch angle distributions(PADs)and electron flux dropouts during the initial and main phases of this storm were investigated,and the evolution of the radial profile of electron phase space density(PSD)and the(μ,K)dependence of electron PSD dropouts(whereμ,K,and L^*are the three adiabatic invariants)were analyzed.The energy-independent decay of electrons at L>4.5 was accompanied by butterfly PADs,suggesting that the magnetopause shadowing process may be the major loss mechanism during the initial phase of the storm at L>4.5.The features of electron dropouts and 90°-peaked PADs were observed only for>1 MeV electrons at L<4,indicating that the wave-induced scattering effect may dominate the electron loss processes at the lower L-shell during the main phase of the storm.Evaluations of the(μ,K)dependence of electron PSD drops and calculations of the minimum electron resonant energies of H+-band electromagnetic ion cyclotron(EMIC)waves support the scenario that the observed PSD drop peaks around L^*=3.9 may be caused mainly by the scattering of EMIC waves,whereas the drop peaks around L^*=4.6 may result from a combination of EMIC wave scattering and outward radial diffusion.展开更多
Advanced microfluidic technology was used to examine the microscopic viscous and inertial effects evolution of water flow in rock joints. The influence of void space on fluid flow behaviour in rock joints under differ...Advanced microfluidic technology was used to examine the microscopic viscous and inertial effects evolution of water flow in rock joints. The influence of void space on fluid flow behaviour in rock joints under different flow velocities was experimentally investigated at the micro scale. Using advanced fabrication technology of microfluidic device, micro flow channels of semicircular, triangular, rectangular and pentagonal cavities were fabricated to simulate different void space of rock joints, respectively. Using the fluorescence labelling approach, the trajectory of water flow was captured by the microscope digital camera when it passed over the cavity under different flow velocities. The flow tests show that the flow trajectory deviated towards the inside of the cavity at low flow velocities. With the increase in flow velocity, this degree of flow trajectory deviation decreased until there was no trajectory deviation for flow in the straight parallel channel. The flow trajectory deviation initially reduced from the void corner near the entrance. At the same time, a small eddy appeared near the void corner of the entrance. The size and intensity of the eddy increased with the flow velocity until it occupied the whole cavity domain. The gradual reduction of flow trajectory near the straight parallel channel and the growth of eddy inside the cavity reflect the evolution of microscopic viscous and inertial forces under different flow velocities.The eddy formed inside the cavity does not contribute to the total flow flux, but the running of the eddy consumes flow energy. This amount of pressure loss due to voids could contribute to the nonlinear deviation of fracture fluid flow from Darcy's law. This study contributes to the fundamental understanding of non-Darcy's flow occurrence in rock joints at the micro scale.展开更多
Airborne passive electronic reconnaissance equipment has developed rapidly during recent years.However,because of its expensive and unavailable military features,the simulation realization of these equipment needs to ...Airborne passive electronic reconnaissance equipment has developed rapidly during recent years.However,because of its expensive and unavailable military features,the simulation realization of these equipment needs to be solved.And the smaller the simulation particle is,the better the simulation system will be.In this study,a signal-level airborne electronic reconnaissance simulation system was built.Mathematical model and simulation realization of each part are introduced in this study.Focusing on the shortness of traditional signal sorting methods,we creatively proposed a presorting method based on the Euclidean distance inside signal flows.Simulation results show that the presorting method based on Euclidean distance successfully reduced the pressure on main sorting and appeared good for signal sorting.Simulation test results of each model built in this study are also shown in the study.This study provides a new thought on the realization of airborne electronic reconnaissance equipment and benefits the development of electronic countermeasure.展开更多
In recent years,it has been proposed to use satellite-mounted radio-frequency(RF)accelerators to produce high-current relativistic electron beams to complete debris removal tasks.However,when simulating the long-range...In recent years,it has been proposed to use satellite-mounted radio-frequency(RF)accelerators to produce high-current relativistic electron beams to complete debris removal tasks.However,when simulating the long-range propagation(km-range)process of the electron beam,it is difficult to directly use the particle-in-cell method to simultaneously consider the space charge effect of beam and the influence of the geomagnetic field.Owing to these limitations,in this paper,we proposed a simplified method.The ps-range electronic micropulses emitted by the RF accelerator were transmitted and fused to form a ns-range electron beam;then,combined with the improved moving window technology,the model was constructed to simulate the long-range propagation process of the relativistic electron beam in near-Earth environment.Finally,by setting the direction of movement of the beam to be parallel,perpendicular and at an inclination of 3°to the magnetic field,we analyzed and compared the effects of the applied magnetic fields in different directions on the quality of the beam during long-range propagation.The simulation results showed that the parallel state of the beam motion and magnetic fields should be achieved as much as possible to ensure the feasibility of the space debris removal.展开更多
基金supported by the National Key Scientific Instrument and Equipment Development Projects of the National Natural Science Foundation of China(No.41327802)China Mars Project
文摘Readout electronics is developed for a prototype time-of-flight(TOF) ion composition spectrometer for in situ measurement of the mass/charge distributions of major ion species from 200 to 100 ke V/e in space plasma.By utilizing a constant fraction discriminator(CFD) and time-to-digital converter(TDC), challenging dynamic range measurements were performed with high time resolution and event rates. CFD was employed to discriminate the TOF signals from the micro-channel plate and channel electron multipliers. TDC based on the combination of counter and OR-gate delay chain was designed in a highreliability flash field programmable gate array. Owing to the non-uniformity of the delay chain, a correction algorithm based on integral nonlinearity compensation was implemented to reduce the time uncertainty. The test results showed that the electronics achieved a low timingerror of < 200 ps in the input range from 35 to 500 m V for the CFD, and a time resolution of ~550 ps with time uncertainty < 180 ps after correction and a time range of6.4 ls for the TDC. The TOF spectrum from an electron beam experiment of the impacting N_2 gas further indicated the good performance of this readout electronic.
文摘This paper gives a brief review of the research activities on space electronics done in Chinese Academy of Space Technology (CAST), especially in Xi'an Institute of Space Radio Technology (XISRT). XISRT undertakes the development and manufacturing of space borne electronic equipment and their relevant ground TT&C in CAST. This paper deals with satellite communication and remote sensing.
文摘The through-space and through-bond interactions of molecular orbitals in [2,2] paracyclophane are studied by the approved MS-X. method with overlapping atomic-sphere. The calculation results show the through-space interactions are exponential flareout with increasing of the distance of two orbitals, and.both through-space interactions and through-bond interactions are sizable but those two interactions oppose each other causing the net splitting to be small. Transition-state procedure was used to calculate ionization potentials, the results are in agreement with the PE-spectra.
基金Supported by National Natural Science Foundation of China (Grant No.51775141)Heilongjiang Touyan Innovation Team Program。
文摘The spacecraft for deep space exploration missions will face extreme environments,including cryogenic temperature,intense radiation,wide-range temperature variations and even the combination of conditions mentioned above.Harsh environments will lead to solder joints degradation or even failure,resulting in damage to onboard electronics.The research activities on high reliability solder joints using in extreme environments can not only reduce the use of onboard protection devices,but effectively improve the overall reliability of spacecraft,which is of great significance to the aviation industry.In this paper,we review the reliability research on SnPb solder alloys,Sn-based lead-free solder alloys and In-based solder alloys in extreme environments,and try to provide some suggestions for the follow-up studies,which focus on solder joint reliability under extreme environments.
文摘This paper gives the brief view of the electronic control system of SPACE SOLAR TELESCOPE (SST), especially the On Board Data Handling unit (OBDH) on the SST which control the operation of the instrument, acquire data and make data analysis and storage. In OBDH, the Scientific Data Unit (SDU) is a special unit that requires high speed computer. In this paper gives a brief comparison of two possible choices and discuss selection of electronic parts in the space environment.
文摘By extending the Levy wavefunction constrained search to Fock Space,one can define a wavefunction constrained search for electron densities in systems having noninteger number of electrons.For pure-state v-representable densities,the results are equivalent to what one would obtain with the zero-temperature grand canonical ensemble.In other cases,the wavefunction constrained search in Fock space presents an upper bound to the grand canonical ensemble functional.One advantage of the Fock-space wavefunction constrained search functional over the zero-temperature grand-canonical ensemble constrained search functional is that certain specific excited states(i.e.,those that are not ground-statev-representable) are the stationary points of the Fock-space functional.However,a potential disadvantage of the Fock-space constrained search functional is that it is not convex.
基金Project supported by CAST Innovation Fund (Grant No.CAST-BISEE2019-040)。
文摘In electron beam technology, one of the critical focuses of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission, operation environment, and role of the electron beam and the corresponding medium. In this study, a field calculation method is proposed, and the electric field intensity distribution on the electron beam’s cross-section is analyzed. The characteristics of beam diffusion caused by the space charge effect are investigated in simulation, and the obtained data are compared with the experiment. The simulation demonstrated that the cross-sectional electric field distribution is primarily affected by the electron beam current, current density distribution, and electron beam propagation speed.
基金Supported by the Ministry of Education and Science of Ukraine under Grant No 0117U002253
文摘We elaborate a quadratic nonlinear theory of plural interactions of growing space charge wave (SCW) harmonics during the development of the two-stream instability in helical relativistic electron beams. It is found that in helical two-stream electron beams the growth rate of the two-stream instability increases with the beam entrance angle. An SCW with the broad frequency spectrum, in which higher harmonics have higher amplitudes, forms when the frequency of the first SCW harmonic is much less than the critical frequency of the two-stream instability. For helical electron beams the spectrum expands with the increase of the beam entrance angle. Moreover, we obtain that utilizing helical electron beams in multiharmonic two-stream superheterodyne free-electron lasers leads to the improvement of their amplification characteristics, the frequency spectrum broadening in multiharmonic signal generation mode, and the reduction of the overall system dimensions.
基金Project supported by the Science Foundation of Department of Education of Sichuan Province,China (Grant No.12233454)the Youth Foundation of Department of Education of Sichuan Province,China (Grant No.10ZB080)the Xihua University Foundation,China (Grant No.Z0913306)
文摘Irregular phase-space orbits of the electrons are harmful to the electron-beam transport quality and hence deteriorate the performance of a free-electron laser (FEL). In previous literature, it was demonstrated that the irregularity of the electron phase-space orbits could be caused in several ways, such as varying the wiggler amplitude and inducing sidebands. Based on a Hamiltonian model with a set of self-consistent differential equations, it is shown in this paper that the electron- beam normalized plasma frequency functions not only couple the electron motion with the FEL wave, which results in the evolution of the FEL wave field and a possible power saturation at a large beam current, but also cause the irregularity of the electron phase-space orbits when the normalized plasma frequency has a sufficiently large value, even if the initial energy of the electron is equal to the synchronous energy or the FEL wave does not reach power saturation.
文摘The space group of PrCo_(12)B_6,compound has been determined using the convergent beam elec- tron diffraction method.The space group is found to be R3m.
基金Supported by the National Science Foundation of China(41474125,41331067,41421063)973 Program(2013CBA01503)Key Research Program of Frontier Sciences,CAS(QYZDJ-SSW-DQC010)
文摘Space satellite observations in an electron phase-space hole(electron hole) have shown that bipolar structures are discovered at the parallel cut of parallel electric field, while unipolar structures spring from the parallel cut of perpendicular electric field. Particle-in-cell(PIC) simulations have demonstrated that the electron bi-stream instability induces several electron holes during its nonlinear evolution. However, how the unipolar structure of the parallel cut of the perpendicular electric field formed in these electron holes is still an unsolved problem,especially in a strongly magnetized plasma(Ω_e >ω_(pe), where Ω_e is defined as electron gyrofrequency and ω_(pe) is defined as plasma frequency, respectively). In this paper, with two-dimensional(2D) electrostatic PIC simulations, the evolution of the electron two-stream instability with a finite width in strongly magnetized plasma is investigated. Initially, those conditions lead to monochromatic electrostatic waves, and these waves coalesce with each other during their nonlinear evolution. At last, a solitary electrostatic structure is formed. In such an electron hole, a bipolar structure is formed in the parallel cut. of parallel electric field, while a unipolar structure presents in the parallel cut of perpendicular electric field.
基金Project supported by the Iranian Nanotechnology Initiativesupported by Shahrekord University through a research fund
文摘We study the effect of electron-phonon (e-ph) interaction on the elastic and inelastic electronic transport of a nanowire connected to two simple rigid leads within the tight-binding and harmonic approximations. The model is constructed using Green's function and multi-channel techniques, taking into account the local and nonlocal e-ph interactions. Then, we examine the model for the gapless (simple chain) and gapped (PA-like nanowire) systems. The results show that the tunneling conductance is improved by the e-ph interaction in both local and nonlocal regimes, while for the resonance conductance, the coherent part mainly decreases and the incoherent part increases. At the corresponding energies which depend on the phonon frequency, two dips in the elastic and two peaks in the inelastic conductance spectra appear. The reason is the absorption of the phonon by the electron in transition into inelastic channels.
基金support from Grant PID2020-116075GB-C21funded by MCIN/AEI/10.13039/501100011033+1 种基金by“ERDF A way of making Europe”under Grant PID2020-116075GB-C21They also acknowledge financial support from the State Agency for Research of the Spanish Ministry of Science and Innovation through the“Unit of Excellence Maria de Maeztu 2020-2023”award to the Institute of Cosmos Sciences(CEX2019-000918-M)。
文摘The BETA application-specific integrated circuit(ASIC)is a fully programmable chip designed to amplify,shape and digitize the signal of up to 64 Silicon photomultiplier(SiPM)channels,with a power consumption of approximately~1 mW/channel.Owing to its dual-path gain,the BETA chip is capable of resolving single photoelectrons(phes)with a signal-to-noise ratio(SNR)>5 while simultaneously achieving a dynamic range of~4000 phes.Thus,BETA can provide a cost-effective solution for the readout of SiPMs in space missions and other applications with a maximum rate below 10 kHz.In this study,we describe the key characteristics of the BETA ASIC and present an evaluation of the performance of its 16-channel version,which is implemented using 130 nm technology.The ASIC also contains two discriminators that can provide trigger signals with a time jitter down to 400 ps FWHM for 10 phes.The linearity error of the charge gain measurement was less than 2%for a dynamic range as large as 15 bits.
基金supported partially by the National Space Lab(No.2009-0091569)BK21+ program through the National Research Foundation(NRF)funded by the Ministry of Education of Korea
文摘Numerical solutions to floating plasma potentials for walls emitting secondary elec- trons are obtained for various surface materials. The calculations are made with plasma moment equations and the secondary electron emission coefficients, which were determined from recent laboratory experiments. The results estimate the wall potentials up to the physical conditions that allow stable plasma sheaths under the space-charge-limited condition. The materials often used in the laboratory, such as aluminum, silicon, boron, molybdenum, silicon dioxide, and alumina, are considered. The minimum wall potential before the onset of space-charge-limited emission is determined by the electron temperatures at which the effective secondary electron emission coefficient integrated over the velocity distributions is about 0.62. The corresponding potential is given by -eφ0 ,- 1.87kBT. The condition for space-charge-limited emission is newly found by numerically searching for all the stable sheaths. The new condition is -eφ0 - 0.95kBT, and this predicts a wall potential that is less negative than the previously found one. Calculation of the power dissipated to the wall for hydrogen plasmas shows that there is a large difference in terms of power dissipation among the considered materials in the temperature range 20-50 eV.
基金supported by the Ministry of Education and Science of Ukraine under Grant No.0117U002253
文摘We developed a cubic non-linear theory describing the dynamics of the multiharmonic spacecharge wave(SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relativistic electron beam(REB) parameters. The self-consistent differential equation system for multiharmonic SCW harmonic amplitudes was elaborated in a cubic non-linear approximation. This system considers plural three-wave parametric resonant interactions between wave harmonics and the two-stream instability effect. Different REB parameters such as the input angle with respect to focusing magnetic field, the average relativistic factor value, difference of partial relativistic factors, and plasma frequency of partial beams were investigated regarding their influence on the frequency spectrum width and multiharmonic SCW saturation levels. We suggested ways in which the multiharmonic SCW frequency spectrum widths could be increased in order to use them in multiharmonic two-stream superheterodyne free-electron lasers, with the main purpose of forming a powerful multiharmonic electromagnetic wave.
文摘The excitation, growing and damping of current instability is an important and vital subject for a lot of studies through its importance in communication for instance and in understanding the nature of space and the interpretation of many phenomena in space and astrophysics. Recent analytical and numerical works are presented to describe and investigate the excitation and growing of kinetic electron-ion two streams instability in anisotropic inhomogeneous dusty space plasmas. We elucidated the thermal effects of plasma species on the characteristics of such instability. It is found that the gradient of space plasma temperature, , is a cause of interesting physical phenomena. Besides, different parameters, such as electron to ion temperature ratio , magnetized plasma and dust grains, are also found to play a crucial role in the growth and depression of such instability.
基金This work was supported by the B-type Strategic Priority Program of the Chinese Academy of Sciences(grant no.XDB41000000)the National Natural Science Foundation of China(grant nos.42025404,41704162,41974186,41674163,41904144,41904143)+1 种基金the pre-research projects on Civil Aerospace Technologies(grant nos.D020303,D020308,D020104)the China National Space Administration,and the China Postdoctoral Science Foundation Project(grant no.2019M662700).We also acknowledge the Van Allen Probes mission,particularly the ECT and EMFISIS team,for providing particle and wave data.The electron flux data were obtained from http://www.rbsp-ect.lanl.gov/data_pub/.The wave data from the EMFISIS instrument were obtained from http://emfisis.physics.uiowa.edu/data/index.The solar wind parameters and geomagnetic indices were obtained from the online OMNIWeb(http://omniweb.gsfc.nasa.gov/).
文摘Radiation belt electron dropouts indicate electron flux decay to the background level during geomagnetic storms,which is commonly attributed to the effects of wave-induced pitch angle scattering and magnetopause shadowing.To investigate the loss mechanisms of radiation belt electron dropouts triggered by a solar wind dynamic pressure pulse event on 12 September 2014,we comprehensively analyzed the particle and wave measurements from Van Allen Probes.The dropout event was divided into three periods:before the storm,the initial phase of the storm,and the main phase of the storm.The electron pitch angle distributions(PADs)and electron flux dropouts during the initial and main phases of this storm were investigated,and the evolution of the radial profile of electron phase space density(PSD)and the(μ,K)dependence of electron PSD dropouts(whereμ,K,and L^*are the three adiabatic invariants)were analyzed.The energy-independent decay of electrons at L>4.5 was accompanied by butterfly PADs,suggesting that the magnetopause shadowing process may be the major loss mechanism during the initial phase of the storm at L>4.5.The features of electron dropouts and 90°-peaked PADs were observed only for>1 MeV electrons at L<4,indicating that the wave-induced scattering effect may dominate the electron loss processes at the lower L-shell during the main phase of the storm.Evaluations of the(μ,K)dependence of electron PSD drops and calculations of the minimum electron resonant energies of H+-band electromagnetic ion cyclotron(EMIC)waves support the scenario that the observed PSD drop peaks around L^*=3.9 may be caused mainly by the scattering of EMIC waves,whereas the drop peaks around L^*=4.6 may result from a combination of EMIC wave scattering and outward radial diffusion.
基金support from the Australian Research Council-linkage Project
文摘Advanced microfluidic technology was used to examine the microscopic viscous and inertial effects evolution of water flow in rock joints. The influence of void space on fluid flow behaviour in rock joints under different flow velocities was experimentally investigated at the micro scale. Using advanced fabrication technology of microfluidic device, micro flow channels of semicircular, triangular, rectangular and pentagonal cavities were fabricated to simulate different void space of rock joints, respectively. Using the fluorescence labelling approach, the trajectory of water flow was captured by the microscope digital camera when it passed over the cavity under different flow velocities. The flow tests show that the flow trajectory deviated towards the inside of the cavity at low flow velocities. With the increase in flow velocity, this degree of flow trajectory deviation decreased until there was no trajectory deviation for flow in the straight parallel channel. The flow trajectory deviation initially reduced from the void corner near the entrance. At the same time, a small eddy appeared near the void corner of the entrance. The size and intensity of the eddy increased with the flow velocity until it occupied the whole cavity domain. The gradual reduction of flow trajectory near the straight parallel channel and the growth of eddy inside the cavity reflect the evolution of microscopic viscous and inertial forces under different flow velocities.The eddy formed inside the cavity does not contribute to the total flow flux, but the running of the eddy consumes flow energy. This amount of pressure loss due to voids could contribute to the nonlinear deviation of fracture fluid flow from Darcy's law. This study contributes to the fundamental understanding of non-Darcy's flow occurrence in rock joints at the micro scale.
文摘Airborne passive electronic reconnaissance equipment has developed rapidly during recent years.However,because of its expensive and unavailable military features,the simulation realization of these equipment needs to be solved.And the smaller the simulation particle is,the better the simulation system will be.In this study,a signal-level airborne electronic reconnaissance simulation system was built.Mathematical model and simulation realization of each part are introduced in this study.Focusing on the shortness of traditional signal sorting methods,we creatively proposed a presorting method based on the Euclidean distance inside signal flows.Simulation results show that the presorting method based on Euclidean distance successfully reduced the pressure on main sorting and appeared good for signal sorting.Simulation test results of each model built in this study are also shown in the study.This study provides a new thought on the realization of airborne electronic reconnaissance equipment and benefits the development of electronic countermeasure.
基金supported by National Natural Science Foundation of China (Nos. 61372050, U1730247)
文摘In recent years,it has been proposed to use satellite-mounted radio-frequency(RF)accelerators to produce high-current relativistic electron beams to complete debris removal tasks.However,when simulating the long-range propagation(km-range)process of the electron beam,it is difficult to directly use the particle-in-cell method to simultaneously consider the space charge effect of beam and the influence of the geomagnetic field.Owing to these limitations,in this paper,we proposed a simplified method.The ps-range electronic micropulses emitted by the RF accelerator were transmitted and fused to form a ns-range electron beam;then,combined with the improved moving window technology,the model was constructed to simulate the long-range propagation process of the relativistic electron beam in near-Earth environment.Finally,by setting the direction of movement of the beam to be parallel,perpendicular and at an inclination of 3°to the magnetic field,we analyzed and compared the effects of the applied magnetic fields in different directions on the quality of the beam during long-range propagation.The simulation results showed that the parallel state of the beam motion and magnetic fields should be achieved as much as possible to ensure the feasibility of the space debris removal.