Structural, electronic and optical properties of Sc-based aluminum-nitride alloy have been carried out with first-principles methods using both local density approximation (LDA) and Heyd-Scuseria-Ernzerhof (HSE) hybri...Structural, electronic and optical properties of Sc-based aluminum-nitride alloy have been carried out with first-principles methods using both local density approximation (LDA) and Heyd-Scuseria-Ernzerhof (HSE) hybrid functional. This latter provides a more accurate description of the lattice parameters, enthalpy of formation, electronic and optical properties of our alloy than standard DFT. We found the transition from wurtzite to rocksalt structures at 61% of Sc concentration. By increasing the scandium concentration, the lattice parameters and the band gap decrease. The HSE band gap is in good agreement with available experimental data. The existence of the strong hybridization between Sc 3d and N 2p indicates the transport of electrons from Sc to N atoms. Besides, it is shown that the insertion of the Sc atom leads to the redshift of the optical absorption edge. The optical absorption of Sc<sub>x</sub>Al<sub>1-x</sub>N is found to decrease with increasing Sc concentrations in the low energy range. Because of this, Sc<sub>x</sub>Al<sub>1-x</sub>N have a great potential for applications in photovoltaics and photocatalysis.展开更多
The optical properties of α-BeH2 in an Orthorhombic crystal structure with the space group (Ibam) are investigated. We have calculated the optical properties including dielelectric function, refractive index and exti...The optical properties of α-BeH2 in an Orthorhombic crystal structure with the space group (Ibam) are investigated. We have calculated the optical properties including dielelectric function, refractive index and extinction coefficient, using density functional approach. A theoretical explanation of the relationship between the dielectric function and other optical constants has been provided. Furthermore, the real and imaginary components of the dielectric function have been examined. The effects of the exchange-correlation potentials (GGA and GGA + U) applied on this compound’s absorption peaks and edges have also been investigated. It was found that using the GGA + U approximation caused the conduction band to shift, which in turn caused the initial absorption peak to shift.展开更多
In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of...In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of the iB-function to first decouple the nonlinear partial differential equations that govern the propagation dynamics in this case, and subsequently solve them to propose some prototype solutions. These analytical solutions have been obtained;we check the impact of nonlinearity and dispersion. The interest of this work lies not only in the resolution of the partial differential equations that govern the dynamics of wave propagation in this case since these equations not at all easy to integrate analytically and their analytical solutions are very rare, in other words, we propose analytically the solutions of the nonlinear coupled partial differential equations which govern the dynamics of four-wave mixing in optical fibers. Beyond the physical interest of this work, there is also an appreciable mathematical interest.展开更多
Cyclo[18]carbon has received considerable attention thanks to its novel geometric configuration and special electronic structure.Superalkalis have low ionization energy.Doping a superalkali in cyclo[18]carbon is an ef...Cyclo[18]carbon has received considerable attention thanks to its novel geometric configuration and special electronic structure.Superalkalis have low ionization energy.Doping a superalkali in cyclo[18]carbon is an effective method to improve the optical properties of the system because considerable electron transfer occurs.In this paper,the geometry,bonding properties,electronic structure,absorption spectrum,and nonlinear optical(NLO)properties of superalkaline M_(3)O(M=Li,Na)-doped cyclo[18]carbon were studied by using density functional theory.M_(3)O and the C_(18) rings are not coplanar.The C_(18) ring still exhibits alternating long and short bonds.The charge transfer between M_(3)O and C_(18) forms stable[M_(3)O]+[C_(18)]-ionic complexes.C_(18)M_(3)O(M=Li,Na)shows striking optical nonlinearity,i.e.,their first-and second-order hyperpolarizability(βvec andγ||)increase considerably atλ=1907 nm and 1460 nm.展开更多
Thin transparent oxide conducting films(TCOFs)of titanium and gallium substituted zinc oxide(TGZO)were fabricated via radio frequency(RF)magnetron sputtering technique.The effects of RF power on electrical,linear and ...Thin transparent oxide conducting films(TCOFs)of titanium and gallium substituted zinc oxide(TGZO)were fabricated via radio frequency(RF)magnetron sputtering technique.The effects of RF power on electrical,linear and nonlinear optical characteristics were investigated by Hall tester,Ultraviolet(UV)-visible spectrophotometer and optical characterization method.The results indicate that RF power significantly influences the electrical and optical properties of the deposited films.As RF power raises,the resistivity and Urbach energy fall initially and then rise,while the figure of merit,mean visible transmittance and optical bandgap show the reverse variation trend.At RF power of 190 W,the TGZO sample exhibits the highest electro-optical properties,with the maximum figure of merit(1.14×10^(4)Ω-1∙cm^(-1)),mean visible transmittance(86.9%)and optical bandgap(3.50 eV),the minimum resistivity(6.26×10^(-4)Ω∙cm)and Urbach energy(174.23 meV).In addition,the optical constants of the deposited films were determined by the optical spectrum fitting method,and the RF power dependence of nonlinear optical properties was studied.It is observed that all the thin films exhibit normal dispersion characteristics in the visible region,and the nonlinear optical parameters are greatly affected by the RF power in the ultraviolet region.展开更多
In this study we are reporting annealing induced optical properties of bismuth ferrite (BiFeO3) thin films deposited on glass substrate via spin coating at 5000 rpm. The structural, optical and surface morphology of B...In this study we are reporting annealing induced optical properties of bismuth ferrite (BiFeO3) thin films deposited on glass substrate via spin coating at 5000 rpm. The structural, optical and surface morphology of BiFeO3 (BFO) thin films have been studied via X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Optical absorption (UV-Vis) and Photoluminescence (PL) spectroscopy. XRD spectra confirm annealing induced phase formation of BiFeO3 possessing a rhombohedral R3c structure. The films are dense and without cracks, although the presence of porosity in BFO/glass was observed. Moreover, optical absorption spectra indicate annealing induced effect on the energy band structure in comparison to pristine BiFeO3. It is observed that annealing effect shows an intense shift in the UV-Vis spectra as diffuse absorption together with the variation in the optical band gap. The evaluated optical band gap values are approximately equal to the bulk band gap value of BiFeO3.展开更多
Multiferroic(BFO)nanoparticles doped with strontium with the general formula Bi1-xSrx FeO3(x=0,0.3,0.5,0.7)were synthesized using a modified sol-gel auto-combustion process.The structural,electrical,optical,and magnet...Multiferroic(BFO)nanoparticles doped with strontium with the general formula Bi1-xSrx FeO3(x=0,0.3,0.5,0.7)were synthesized using a modified sol-gel auto-combustion process.The structural,electrical,optical,and magnetic properties of the samples are discussed.The structural analysis,carried out using the x-ray powder diffraction technique,shows a structural transition from rhombohedral(R-3c)to cubic(Pm-3m)for the doping amount of strontium(Sr)equal to x=0.3.Morphological analysis of the prepared samples were carried out using scanning electron microscopy(SEM).Frequency-dependent dielectric constant and ac conductivity were studied.The doped samples,with improved dielectric properties,can be used to fabricate different optoelectronic devices.Strong dielectric dispersion and broad relaxation were exhibited by all the samples.Cole–Cole plots were employed as an effective tool to study the dispersion parameters,namely,the optical dielectric constant,static dielectric constant,relaxation time,and spreading factor.The activation energy was calculated from the relaxation peaks and Cole–Cole plots,which were found to be compatible with each other.The bandgap of the samples was calculated using diffuse reflectance spectral(DRS)analysis.Sharp and strong photoluminescence in the IR region was observed in the samples,similar to ZnO,which was reported for the first time.Room-temperature and low-temperature magnetization studies point towards the superparamagnetic nature of the samples,with an improvement in magnetic properties with doping.The antiferromagnetic behavior of bulk bismuth ferrite transforms to superparamagnetic in nature for both pure and Sr-substituted bismuth ferrite nanoparticles due to the close dimensions of crystallite size with magnetic domains leading to the break-down of the frustrated spin cycloidal moment.展开更多
The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of it...The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of its good sustainability and acceptable economic cost,triggering the development of various types of extraterrestrial construction materials.A comprehensive survey and comparison of materials from the perspective of performance was conducted to provide suggestions for material selection and optimization.Thirteen types of typical construction materials are discussed in terms of their reliability and applicability in extreme extraterrestrial environment.Mechanical,thermal and optical,and radiation-shielding properties are considered.The influencing factors and optimization methods for these properties are analyzed.From the perspective of material properties,the existing challenges lie in the comprehensive,long-term,and real characterization of regolith-based construction materials.Correspondingly,the suggested future directions include the application of high-throughput characterization methods,accelerated durability tests,and conducting extraterrestrial experiments.展开更多
Interpreting reservoir properties through log data and logging responses in complex strata is critical for efficient petroleum exploitation,particularly for metamorphic rocks.However,the unsatisfactory accuracy of suc...Interpreting reservoir properties through log data and logging responses in complex strata is critical for efficient petroleum exploitation,particularly for metamorphic rocks.However,the unsatisfactory accuracy of such interpretations in complex reservoirs has hindered their widespread application,resulting in severe inconvenience.In this study,we proposed a multi-mineral model based on the least-square method and an optimal principle to interpret the logging responses and petrophysical properties of complex hydrocarbon reservoirs.We began by selecting the main minerals based on a comprehensive analysis of log data,X-ray diffraction,petrographic thin sections and scanning electron microscopy(SEM)for three wells in the Bozhong 19-6 structural zone.In combination of the physical properties of these minerals with logging responses,we constructed the multi-mineral model,which can predict the log curves,petrophysical properties and mineral profile.The predicted and measured log data are evaluated using a weighted average error,which shows that the multi-mineral model has satisfactory prediction performance with errors below 11%in most intervals.Finally,we apply the model to a new well“x”in the Bozhong 19-6 structural zone,and the predicted logging responses match well with measured data with the weighted average error below 11.8%for most intervals.Moreover,the lithology is dominated by plagioclase,K-feldspar,and quartz as shown by the mineral profile,which correlates with the lithology of the Archean metamorphic rocks in this region.It is concluded that the multi-mineral model presented in this study provides reasonable methods for interpreting log data in complex metamorphic hydrocarbon reservoirs and could assist in efficient development in the future.展开更多
The band structure,DOSs,and optical properties of(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO,including dielectric function,absorption function,reflection function,and energy loss spectrum were studied by using the first...The band structure,DOSs,and optical properties of(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO,including dielectric function,absorption function,reflection function,and energy loss spectrum were studied by using the first-principles calculation.The calculation results indicate that(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO is a direct bandgap semiconductor with a bandgap of 1.1 eV.The Fermi surface is asymmetric and exhibits spin splitting phenomenon.The new type of dilute magnetic semiconductor(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO exhibits significant light loss around 70 eV,with light reflection gradually increasing after 30 eV,and light absorption mainly occurring around 8-30 eV.These results also provide a basis for the discovery of more types of 1111 phase new dilute magnetic semiconductors in the future.展开更多
Pyrochlore structure La2Sn2O7:Eu3+ microcrystals with uniform octahedron shape were successfully synthesized via a hydrothermal route at 180 °C for 36 h. The crystal structure, particle size, morphologies, and ...Pyrochlore structure La2Sn2O7:Eu3+ microcrystals with uniform octahedron shape were successfully synthesized via a hydrothermal route at 180 °C for 36 h. The crystal structure, particle size, morphologies, and optical properties of the as-synthesized products were investigated by XRD, TEM, SEM, EDS, FT-IR, Raman spectroscopy and PL. The effects of pH of precursor solution, precursor concentration, reaction temperature, and time were investigated. The results reveal that pH of the precursor solution not only plays an important role in determining the phase of the as-synthesized products, but also has a significant influence on the morphologies of the samples. High-quality and uniform octahedrons with an average size of about 700 nm could be easily obtained at the pH value of 12. The possible formation mechanism of octahedral-like La2Sn2O7:Eu3+ microcrystals was briefly proposed. The photoluminescence spectra show that La2Sn2O7:Eu3+ micro-octahedra display stronger emission in the range of 582-592 nm compared with the samples with other shapes.展开更多
ZnS ∶Cu nanoparticles were prepared by using microemulsion method at room temperature. The size of the particles is 2-8 nm by transmission electron microscopy (TEM) and dynamic light scattering (DLS) technique. X-ray...ZnS ∶Cu nanoparticles were prepared by using microemulsion method at room temperature. The size of the particles is 2-8 nm by transmission electron microscopy (TEM) and dynamic light scattering (DLS) technique. X-ray diffraction analysis shows that the particles are cubic crystal structure, the same structure as the bulk ZnS materials. Ultraviolet absorption demonstrates an increased bandgap due to quantum confinement effect. Photoluminescence spectrum shows there is a single green emission band at 482 nm.展开更多
ZnO films grown by metal organic chemical vapor deposition at atmospheric pressure are annealed at 850℃ ,with the film surfaces exposed to air or covered by a sapphire wafer. The optical properties of the as-grown an...ZnO films grown by metal organic chemical vapor deposition at atmospheric pressure are annealed at 850℃ ,with the film surfaces exposed to air or covered by a sapphire wafer. The optical properties of the as-grown and the annealed samples are studied by photoluminescence (PL) spectroscopy. It is found that the air-exposure annealing effectively removes the hydrogen impurities from the ZnO films but greatly increases the deep-level emission. In the surface-covered annealed sample, an elimination of the hydrogen impurities is also observed, and the deep-level emission disappears completely. The free exciton emission is significantly enhanced in the ZnO film after surface-covered annealing.展开更多
A series of CH2, NH, O, and Se substituted 2,1,3-benzothiadiazote derivatives have been designed and investigated computationally to elucidate their potential as organic light-emitting materials for organic light-emit...A series of CH2, NH, O, and Se substituted 2,1,3-benzothiadiazote derivatives have been designed and investigated computationally to elucidate their potential as organic light-emitting materials for organic light-emitting diodes. Both ab initio Hartree-Foek and hybrid density functional methods are used. It is found that S by CH2, NH, O, and Se makes it possible transport properties of the pristine molecule adjusting the central aromatic ring by replacing to fine-tune the electronic, optical, and charge展开更多
The structure, electromagnetic and optical properties of the O-terminated graphene nanorib- bons with armchair edge are studied using first-principles theory. The results show that the O-terminated armchair edge are m...The structure, electromagnetic and optical properties of the O-terminated graphene nanorib- bons with armchair edge are studied using first-principles theory. The results show that the O-terminated armchair edge are more stable than the H-terminated ribbons and show metal- lic character. Spin-polarized calculations reveal that the antiferromagnetic state are more stable than the ferromagnetic state. The energy band and density of states analyses show that the O-terminated armchair edge are antiferromagnetic semiconductors. Because of the terminated 0 atoms, the dielectric function has an evident red shift and the first peak is the strongest with its main contribution derived from the highest valence band. The peaks of the dielectric function, reflection, absorption, energy loss are related to the transition of electrons. Our results suggest that the O-terminated graphene nanoribbons have potential applications in nanoelectronics, opto-electric devices.展开更多
The structural, elastic, electronic and optical properties for U3Si2-type AlSc2Si2 compound under pressure were systematically investigated by using the first-principles calculations. The values of elastic constants a...The structural, elastic, electronic and optical properties for U3Si2-type AlSc2Si2 compound under pressure were systematically investigated by using the first-principles calculations. The values of elastic constants and elastic moduli indicate that AlSc2Si2 keeps mechanical stability under high pressure. The mechanical properties of AISc2Si2 are compared with those of Al3Sc. The results indicate that AlSc2Si2 is harder than AI3Sc. Anisotropic constant AU and 3D curved surface of elastic moduli predict that AISc2Si2 is obviously anisotropic under pressure. The electronic structure of AlSc2Si2 exhibits metallic character and the metallicity decreases with the elevated pressure. In addition, optical properties as a function of pressure were calculated and analyzed. The present work provides theoretical support for further experimental work and industrial applications.展开更多
The energetics, electronic structures, and optical properties of several neutral vacancies for γ-Si3N4 are studied based on density function theory within the generalized gradient approximation. The binding and forma...The energetics, electronic structures, and optical properties of several neutral vacancies for γ-Si3N4 are studied based on density function theory within the generalized gradient approximation. The binding and formation energies of nitrogen vacancy are smaller than that of silicon vacancies, implying that nitrogen vacancy can be easily formed in γ-Si3N4.Corresponding density of states of different point vacancies is analyzed. We concluded that the neutral silicon vacancies introduce the p-type carriers into the system, whereas single nitrogen vacancy leads to an n-type semiconductor. The results show indirect semiconductor of nitrogen vacancy for γ-Si3N4. The effects of optical properties are discussed on single vacancies for γ-Si3N4. For silicon vacancies, the materials have much higher static dielectric constants than these of nitrogen vacancy and perfect γ-Si3N4. The single nitrogen vacancy for γ-Si3N4 has no effects on absorption and reflection in visible and infrared light. For silicon vacancy, it is significantly increased.展开更多
For the crystalline temperature of BaSnO_(3)(BTO)was above 650℃,the transparent conductive BTO-based films were always deposited above this temperature on epitaxy substrates by pulsed laser deposition or molecular be...For the crystalline temperature of BaSnO_(3)(BTO)was above 650℃,the transparent conductive BTO-based films were always deposited above this temperature on epitaxy substrates by pulsed laser deposition or molecular beam epitaxy till now which limited there application in low temperature device process.In the article,the microstructure,optical and electrical of BTO and In_(2)O_(3) mixed transparent conductive BaInSnO_(x)(BITO)film deposited by filtered cathodic vacuum arc technique(FCVA)on glass substrate at room temperature were firstly reported.The BITO film with thickness of 300 nm had mainly In_(2)O_(3) polycrystalline phase,and minor polycrystalline BTO phase with(001),(011),(111),(002),(222)crystal faces which were first deposited at room temperature on amorphous glass.The transmittance was 70%–80%in the visible light region with linear refractive index of 1.94 and extinction coefficient of 0.004 at 550-nm wavelength.The basic optical properties included the real and imaginary parts,high frequency dielectric constants,the absorption coefficient,the Urbach energy,the indirect and direct band gaps,the oscillator and dispersion energies,the static refractive index and dielectric constant,the average oscillator wavelength,oscillator length strength,the linear and the third-order nonlinear optical susceptibilities,and the nonlinear refractive index were all calculated.The film was the n-type conductor with sheet resistance of 704.7Ω/□,resistivity of 0.02Ω⋅cm,mobility of 18.9 cm2/V⋅s,and carrier electron concentration of 1.6×10^(19) cm^(−3) at room temperature.The results suggested that the BITO film deposited by FCVA had potential application in transparent conductive films-based low temperature device process.展开更多
Rare earth luminescent materials have attracted significant attention due to their wide-ranging applications in the field of optoelectronics. This study aims to delve into the electronic structure and optical properti...Rare earth luminescent materials have attracted significant attention due to their wide-ranging applications in the field of optoelectronics. This study aims to delve into the electronic structure and optical properties of rare earth luminescent materials, with the goal of uncovering their importance in luminescence mechanisms and applications. Through theoretical calculations and experimental methods, we conducted in-depth analyses on materials composed of various rare earth elements. Regarding electronic structure, we utilized computational techniques such as density functional theory to investigate the band structure, valence state distribution, and electronic density of states of rare earth luminescent materials. The results indicate that the electronic structural differences among different rare earth elements notably influence their luminescence performance, providing crucial clues for explaining the luminescence mechanism. In terms of optical properties, we systematically examined the material’s optical behaviors through fluorescence spectroscopy, absorption spectroscopy, and other experimental approaches. We found that rare earth luminescent materials exhibit distinct absorption and emission characteristics at different wavelengths, closely related to the transition processes of their electronic energy levels. Furthermore, we studied the influence of varying doping concentrations and impurities on the material’s optical properties. Experimental outcomes reveal that appropriate doping can effectively regulate the emission intensity and wavelength, offering greater possibilities for material applications. In summary, this study comprehensively analyzed the electronic structure and optical properties of rare earth luminescent materials, providing deep insights into understanding their luminescence mechanisms and potential value in optoelectronic applications. In the future, these research findings will serve as crucial references for the technological advancement in fields such as LEDs, lasers, and bioimaging.展开更多
Magnetic and optical properties of ZnO co-doped with transition metal and carbon have been investigated using density functional theory based on first-principles ultrasoft pseudopoten- tial method. Upon co-doping with...Magnetic and optical properties of ZnO co-doped with transition metal and carbon have been investigated using density functional theory based on first-principles ultrasoft pseudopoten- tial method. Upon co-doping with transition metal (TM) and carbon, the calculated results show a shift in the Fermi level and a remarkable change in the covalency of ZnO. Such cases energetically favor ferromagnetic semiconductor with high Curie temperature due to p-d exchange interaction between TM ions and holes induced by C doping. The total en- ergy difference between the ferromagnetic and the antiferromagnetic configurations, spatial charge and spin density, which determine the magnetic ordering, were calculated in co-doped systems for further analysis of magnetic properties. It was also discovered that optical prop- erties in the higher energy region remain relatively unchanged while those at the low energy region are changed after the co-doping. These changes of optical properties are qualitatively explained based on the calculated electronic structure. The validity of our calculation in comparison with other theoretical predictions will further motivate the experimental inves- tigation of (TM, C) co-doped ZnO diluted magnetic semiconductors.展开更多
文摘Structural, electronic and optical properties of Sc-based aluminum-nitride alloy have been carried out with first-principles methods using both local density approximation (LDA) and Heyd-Scuseria-Ernzerhof (HSE) hybrid functional. This latter provides a more accurate description of the lattice parameters, enthalpy of formation, electronic and optical properties of our alloy than standard DFT. We found the transition from wurtzite to rocksalt structures at 61% of Sc concentration. By increasing the scandium concentration, the lattice parameters and the band gap decrease. The HSE band gap is in good agreement with available experimental data. The existence of the strong hybridization between Sc 3d and N 2p indicates the transport of electrons from Sc to N atoms. Besides, it is shown that the insertion of the Sc atom leads to the redshift of the optical absorption edge. The optical absorption of Sc<sub>x</sub>Al<sub>1-x</sub>N is found to decrease with increasing Sc concentrations in the low energy range. Because of this, Sc<sub>x</sub>Al<sub>1-x</sub>N have a great potential for applications in photovoltaics and photocatalysis.
文摘The optical properties of α-BeH2 in an Orthorhombic crystal structure with the space group (Ibam) are investigated. We have calculated the optical properties including dielelectric function, refractive index and extinction coefficient, using density functional approach. A theoretical explanation of the relationship between the dielectric function and other optical constants has been provided. Furthermore, the real and imaginary components of the dielectric function have been examined. The effects of the exchange-correlation potentials (GGA and GGA + U) applied on this compound’s absorption peaks and edges have also been investigated. It was found that using the GGA + U approximation caused the conduction band to shift, which in turn caused the initial absorption peak to shift.
文摘In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of the iB-function to first decouple the nonlinear partial differential equations that govern the propagation dynamics in this case, and subsequently solve them to propose some prototype solutions. These analytical solutions have been obtained;we check the impact of nonlinearity and dispersion. The interest of this work lies not only in the resolution of the partial differential equations that govern the dynamics of wave propagation in this case since these equations not at all easy to integrate analytically and their analytical solutions are very rare, in other words, we propose analytically the solutions of the nonlinear coupled partial differential equations which govern the dynamics of four-wave mixing in optical fibers. Beyond the physical interest of this work, there is also an appreciable mathematical interest.
基金Project supported by the Natural Science Foundation of Anhui Province(Grant No.1908085MA12)the National Natural Science Foundation of China(Grant No.21703222)。
文摘Cyclo[18]carbon has received considerable attention thanks to its novel geometric configuration and special electronic structure.Superalkalis have low ionization energy.Doping a superalkali in cyclo[18]carbon is an effective method to improve the optical properties of the system because considerable electron transfer occurs.In this paper,the geometry,bonding properties,electronic structure,absorption spectrum,and nonlinear optical(NLO)properties of superalkaline M_(3)O(M=Li,Na)-doped cyclo[18]carbon were studied by using density functional theory.M_(3)O and the C_(18) rings are not coplanar.The C_(18) ring still exhibits alternating long and short bonds.The charge transfer between M_(3)O and C_(18) forms stable[M_(3)O]+[C_(18)]-ionic complexes.C_(18)M_(3)O(M=Li,Na)shows striking optical nonlinearity,i.e.,their first-and second-order hyperpolarizability(βvec andγ||)increase considerably atλ=1907 nm and 1460 nm.
文摘Thin transparent oxide conducting films(TCOFs)of titanium and gallium substituted zinc oxide(TGZO)were fabricated via radio frequency(RF)magnetron sputtering technique.The effects of RF power on electrical,linear and nonlinear optical characteristics were investigated by Hall tester,Ultraviolet(UV)-visible spectrophotometer and optical characterization method.The results indicate that RF power significantly influences the electrical and optical properties of the deposited films.As RF power raises,the resistivity and Urbach energy fall initially and then rise,while the figure of merit,mean visible transmittance and optical bandgap show the reverse variation trend.At RF power of 190 W,the TGZO sample exhibits the highest electro-optical properties,with the maximum figure of merit(1.14×10^(4)Ω-1∙cm^(-1)),mean visible transmittance(86.9%)and optical bandgap(3.50 eV),the minimum resistivity(6.26×10^(-4)Ω∙cm)and Urbach energy(174.23 meV).In addition,the optical constants of the deposited films were determined by the optical spectrum fitting method,and the RF power dependence of nonlinear optical properties was studied.It is observed that all the thin films exhibit normal dispersion characteristics in the visible region,and the nonlinear optical parameters are greatly affected by the RF power in the ultraviolet region.
文摘In this study we are reporting annealing induced optical properties of bismuth ferrite (BiFeO3) thin films deposited on glass substrate via spin coating at 5000 rpm. The structural, optical and surface morphology of BiFeO3 (BFO) thin films have been studied via X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Optical absorption (UV-Vis) and Photoluminescence (PL) spectroscopy. XRD spectra confirm annealing induced phase formation of BiFeO3 possessing a rhombohedral R3c structure. The films are dense and without cracks, although the presence of porosity in BFO/glass was observed. Moreover, optical absorption spectra indicate annealing induced effect on the energy band structure in comparison to pristine BiFeO3. It is observed that annealing effect shows an intense shift in the UV-Vis spectra as diffuse absorption together with the variation in the optical band gap. The evaluated optical band gap values are approximately equal to the bulk band gap value of BiFeO3.
基金Project supported by the Support from DST, Govt of India for the FIST grant sanctioned to Vimala College Thrissur (Grant No. SR/FST/College-046/2011)Sultan Qaboos University for the support provided during this study
文摘Multiferroic(BFO)nanoparticles doped with strontium with the general formula Bi1-xSrx FeO3(x=0,0.3,0.5,0.7)were synthesized using a modified sol-gel auto-combustion process.The structural,electrical,optical,and magnetic properties of the samples are discussed.The structural analysis,carried out using the x-ray powder diffraction technique,shows a structural transition from rhombohedral(R-3c)to cubic(Pm-3m)for the doping amount of strontium(Sr)equal to x=0.3.Morphological analysis of the prepared samples were carried out using scanning electron microscopy(SEM).Frequency-dependent dielectric constant and ac conductivity were studied.The doped samples,with improved dielectric properties,can be used to fabricate different optoelectronic devices.Strong dielectric dispersion and broad relaxation were exhibited by all the samples.Cole–Cole plots were employed as an effective tool to study the dispersion parameters,namely,the optical dielectric constant,static dielectric constant,relaxation time,and spreading factor.The activation energy was calculated from the relaxation peaks and Cole–Cole plots,which were found to be compatible with each other.The bandgap of the samples was calculated using diffuse reflectance spectral(DRS)analysis.Sharp and strong photoluminescence in the IR region was observed in the samples,similar to ZnO,which was reported for the first time.Room-temperature and low-temperature magnetization studies point towards the superparamagnetic nature of the samples,with an improvement in magnetic properties with doping.The antiferromagnetic behavior of bulk bismuth ferrite transforms to superparamagnetic in nature for both pure and Sr-substituted bismuth ferrite nanoparticles due to the close dimensions of crystallite size with magnetic domains leading to the break-down of the frustrated spin cycloidal moment.
基金supported by the National Key Research and Development Program of China(2023YFB3711300 and 2021YFF0500300)the Strategic Research and Consulting Project of the Chinese Academy of Engineering(2023-XZ-90 and 2023-JB-09-10)the National Key Research and Development Program of China(2021YFF0500300).
文摘The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of its good sustainability and acceptable economic cost,triggering the development of various types of extraterrestrial construction materials.A comprehensive survey and comparison of materials from the perspective of performance was conducted to provide suggestions for material selection and optimization.Thirteen types of typical construction materials are discussed in terms of their reliability and applicability in extreme extraterrestrial environment.Mechanical,thermal and optical,and radiation-shielding properties are considered.The influencing factors and optimization methods for these properties are analyzed.From the perspective of material properties,the existing challenges lie in the comprehensive,long-term,and real characterization of regolith-based construction materials.Correspondingly,the suggested future directions include the application of high-throughput characterization methods,accelerated durability tests,and conducting extraterrestrial experiments.
基金funded by Science and Technology Major Project of China National Offshore Oil Corporation(CNOOC-KJ 135 ZDXM36 TJ 08TJ).
文摘Interpreting reservoir properties through log data and logging responses in complex strata is critical for efficient petroleum exploitation,particularly for metamorphic rocks.However,the unsatisfactory accuracy of such interpretations in complex reservoirs has hindered their widespread application,resulting in severe inconvenience.In this study,we proposed a multi-mineral model based on the least-square method and an optimal principle to interpret the logging responses and petrophysical properties of complex hydrocarbon reservoirs.We began by selecting the main minerals based on a comprehensive analysis of log data,X-ray diffraction,petrographic thin sections and scanning electron microscopy(SEM)for three wells in the Bozhong 19-6 structural zone.In combination of the physical properties of these minerals with logging responses,we constructed the multi-mineral model,which can predict the log curves,petrophysical properties and mineral profile.The predicted and measured log data are evaluated using a weighted average error,which shows that the multi-mineral model has satisfactory prediction performance with errors below 11%in most intervals.Finally,we apply the model to a new well“x”in the Bozhong 19-6 structural zone,and the predicted logging responses match well with measured data with the weighted average error below 11.8%for most intervals.Moreover,the lithology is dominated by plagioclase,K-feldspar,and quartz as shown by the mineral profile,which correlates with the lithology of the Archean metamorphic rocks in this region.It is concluded that the multi-mineral model presented in this study provides reasonable methods for interpreting log data in complex metamorphic hydrocarbon reservoirs and could assist in efficient development in the future.
文摘The band structure,DOSs,and optical properties of(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO,including dielectric function,absorption function,reflection function,and energy loss spectrum were studied by using the first-principles calculation.The calculation results indicate that(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO is a direct bandgap semiconductor with a bandgap of 1.1 eV.The Fermi surface is asymmetric and exhibits spin splitting phenomenon.The new type of dilute magnetic semiconductor(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO exhibits significant light loss around 70 eV,with light reflection gradually increasing after 30 eV,and light absorption mainly occurring around 8-30 eV.These results also provide a basis for the discovery of more types of 1111 phase new dilute magnetic semiconductors in the future.
基金Project (07C26214301746) supported by Innovation Foundation of Ministry of Science and Technology, ChinaProject (2010GXNSFB013008) supported by Guangxi Natural Science Foundation, ChinaProject (2009bsxt001) supported by the Graduate Degree Thesis Innovation Foundation of Central South University, China
文摘Pyrochlore structure La2Sn2O7:Eu3+ microcrystals with uniform octahedron shape were successfully synthesized via a hydrothermal route at 180 °C for 36 h. The crystal structure, particle size, morphologies, and optical properties of the as-synthesized products were investigated by XRD, TEM, SEM, EDS, FT-IR, Raman spectroscopy and PL. The effects of pH of precursor solution, precursor concentration, reaction temperature, and time were investigated. The results reveal that pH of the precursor solution not only plays an important role in determining the phase of the as-synthesized products, but also has a significant influence on the morphologies of the samples. High-quality and uniform octahedrons with an average size of about 700 nm could be easily obtained at the pH value of 12. The possible formation mechanism of octahedral-like La2Sn2O7:Eu3+ microcrystals was briefly proposed. The photoluminescence spectra show that La2Sn2O7:Eu3+ micro-octahedra display stronger emission in the range of 582-592 nm compared with the samples with other shapes.
文摘ZnS ∶Cu nanoparticles were prepared by using microemulsion method at room temperature. The size of the particles is 2-8 nm by transmission electron microscopy (TEM) and dynamic light scattering (DLS) technique. X-ray diffraction analysis shows that the particles are cubic crystal structure, the same structure as the bulk ZnS materials. Ultraviolet absorption demonstrates an increased bandgap due to quantum confinement effect. Photoluminescence spectrum shows there is a single green emission band at 482 nm.
文摘ZnO films grown by metal organic chemical vapor deposition at atmospheric pressure are annealed at 850℃ ,with the film surfaces exposed to air or covered by a sapphire wafer. The optical properties of the as-grown and the annealed samples are studied by photoluminescence (PL) spectroscopy. It is found that the air-exposure annealing effectively removes the hydrogen impurities from the ZnO films but greatly increases the deep-level emission. In the surface-covered annealed sample, an elimination of the hydrogen impurities is also observed, and the deep-level emission disappears completely. The free exciton emission is significantly enhanced in the ZnO film after surface-covered annealing.
文摘A series of CH2, NH, O, and Se substituted 2,1,3-benzothiadiazote derivatives have been designed and investigated computationally to elucidate their potential as organic light-emitting materials for organic light-emitting diodes. Both ab initio Hartree-Foek and hybrid density functional methods are used. It is found that S by CH2, NH, O, and Se makes it possible transport properties of the pristine molecule adjusting the central aromatic ring by replacing to fine-tune the electronic, optical, and charge
文摘The structure, electromagnetic and optical properties of the O-terminated graphene nanorib- bons with armchair edge are studied using first-principles theory. The results show that the O-terminated armchair edge are more stable than the H-terminated ribbons and show metal- lic character. Spin-polarized calculations reveal that the antiferromagnetic state are more stable than the ferromagnetic state. The energy band and density of states analyses show that the O-terminated armchair edge are antiferromagnetic semiconductors. Because of the terminated 0 atoms, the dielectric function has an evident red shift and the first peak is the strongest with its main contribution derived from the highest valence band. The peaks of the dielectric function, reflection, absorption, energy loss are related to the transition of electrons. Our results suggest that the O-terminated graphene nanoribbons have potential applications in nanoelectronics, opto-electric devices.
基金Projects(L2014051,LT2014004)supported by the Program for Scientific Technology Plan of the Educational Department of Liaoning Province,China
文摘The structural, elastic, electronic and optical properties for U3Si2-type AlSc2Si2 compound under pressure were systematically investigated by using the first-principles calculations. The values of elastic constants and elastic moduli indicate that AlSc2Si2 keeps mechanical stability under high pressure. The mechanical properties of AISc2Si2 are compared with those of Al3Sc. The results indicate that AlSc2Si2 is harder than AI3Sc. Anisotropic constant AU and 3D curved surface of elastic moduli predict that AISc2Si2 is obviously anisotropic under pressure. The electronic structure of AlSc2Si2 exhibits metallic character and the metallicity decreases with the elevated pressure. In addition, optical properties as a function of pressure were calculated and analyzed. The present work provides theoretical support for further experimental work and industrial applications.
文摘The energetics, electronic structures, and optical properties of several neutral vacancies for γ-Si3N4 are studied based on density function theory within the generalized gradient approximation. The binding and formation energies of nitrogen vacancy are smaller than that of silicon vacancies, implying that nitrogen vacancy can be easily formed in γ-Si3N4.Corresponding density of states of different point vacancies is analyzed. We concluded that the neutral silicon vacancies introduce the p-type carriers into the system, whereas single nitrogen vacancy leads to an n-type semiconductor. The results show indirect semiconductor of nitrogen vacancy for γ-Si3N4. The effects of optical properties are discussed on single vacancies for γ-Si3N4. For silicon vacancies, the materials have much higher static dielectric constants than these of nitrogen vacancy and perfect γ-Si3N4. The single nitrogen vacancy for γ-Si3N4 has no effects on absorption and reflection in visible and infrared light. For silicon vacancy, it is significantly increased.
基金Project supported by the Enterprise Science and Technology Correspondent for Guangdong Province,China (Grant No.GDKTP2021015200)。
文摘For the crystalline temperature of BaSnO_(3)(BTO)was above 650℃,the transparent conductive BTO-based films were always deposited above this temperature on epitaxy substrates by pulsed laser deposition or molecular beam epitaxy till now which limited there application in low temperature device process.In the article,the microstructure,optical and electrical of BTO and In_(2)O_(3) mixed transparent conductive BaInSnO_(x)(BITO)film deposited by filtered cathodic vacuum arc technique(FCVA)on glass substrate at room temperature were firstly reported.The BITO film with thickness of 300 nm had mainly In_(2)O_(3) polycrystalline phase,and minor polycrystalline BTO phase with(001),(011),(111),(002),(222)crystal faces which were first deposited at room temperature on amorphous glass.The transmittance was 70%–80%in the visible light region with linear refractive index of 1.94 and extinction coefficient of 0.004 at 550-nm wavelength.The basic optical properties included the real and imaginary parts,high frequency dielectric constants,the absorption coefficient,the Urbach energy,the indirect and direct band gaps,the oscillator and dispersion energies,the static refractive index and dielectric constant,the average oscillator wavelength,oscillator length strength,the linear and the third-order nonlinear optical susceptibilities,and the nonlinear refractive index were all calculated.The film was the n-type conductor with sheet resistance of 704.7Ω/□,resistivity of 0.02Ω⋅cm,mobility of 18.9 cm2/V⋅s,and carrier electron concentration of 1.6×10^(19) cm^(−3) at room temperature.The results suggested that the BITO film deposited by FCVA had potential application in transparent conductive films-based low temperature device process.
文摘Rare earth luminescent materials have attracted significant attention due to their wide-ranging applications in the field of optoelectronics. This study aims to delve into the electronic structure and optical properties of rare earth luminescent materials, with the goal of uncovering their importance in luminescence mechanisms and applications. Through theoretical calculations and experimental methods, we conducted in-depth analyses on materials composed of various rare earth elements. Regarding electronic structure, we utilized computational techniques such as density functional theory to investigate the band structure, valence state distribution, and electronic density of states of rare earth luminescent materials. The results indicate that the electronic structural differences among different rare earth elements notably influence their luminescence performance, providing crucial clues for explaining the luminescence mechanism. In terms of optical properties, we systematically examined the material’s optical behaviors through fluorescence spectroscopy, absorption spectroscopy, and other experimental approaches. We found that rare earth luminescent materials exhibit distinct absorption and emission characteristics at different wavelengths, closely related to the transition processes of their electronic energy levels. Furthermore, we studied the influence of varying doping concentrations and impurities on the material’s optical properties. Experimental outcomes reveal that appropriate doping can effectively regulate the emission intensity and wavelength, offering greater possibilities for material applications. In summary, this study comprehensively analyzed the electronic structure and optical properties of rare earth luminescent materials, providing deep insights into understanding their luminescence mechanisms and potential value in optoelectronic applications. In the future, these research findings will serve as crucial references for the technological advancement in fields such as LEDs, lasers, and bioimaging.
文摘Magnetic and optical properties of ZnO co-doped with transition metal and carbon have been investigated using density functional theory based on first-principles ultrasoft pseudopoten- tial method. Upon co-doping with transition metal (TM) and carbon, the calculated results show a shift in the Fermi level and a remarkable change in the covalency of ZnO. Such cases energetically favor ferromagnetic semiconductor with high Curie temperature due to p-d exchange interaction between TM ions and holes induced by C doping. The total en- ergy difference between the ferromagnetic and the antiferromagnetic configurations, spatial charge and spin density, which determine the magnetic ordering, were calculated in co-doped systems for further analysis of magnetic properties. It was also discovered that optical prop- erties in the higher energy region remain relatively unchanged while those at the low energy region are changed after the co-doping. These changes of optical properties are qualitatively explained based on the calculated electronic structure. The validity of our calculation in comparison with other theoretical predictions will further motivate the experimental inves- tigation of (TM, C) co-doped ZnO diluted magnetic semiconductors.