A model of low-frequency quasi-periodic oscillations (LFQPOs) of black hole X-ray binaries (BHXBs) is proposed based on the perturbed magnetohydrody- namic equations of an accretion disk. It turns out that the LFQ...A model of low-frequency quasi-periodic oscillations (LFQPOs) of black hole X-ray binaries (BHXBs) is proposed based on the perturbed magnetohydrody- namic equations of an accretion disk. It turns out that the LFQPO frequencies of some BHXBs can be fitted by the frequencies of the toroidal Alfv6n wave oscillation cor- responding to the maximal radiation flux. In addition, the positive correlation of the LFQPO frequencies with the radiation flux from an accretion disk is well interpreted.展开更多
Solving Newtonian steady-state wind equations while considering the ac- curate weak interaction rates and magnetic fields (MFs) of young neutron stars, we study the dynamics and nucleosynthesis of neutrino-driven wi...Solving Newtonian steady-state wind equations while considering the ac- curate weak interaction rates and magnetic fields (MFs) of young neutron stars, we study the dynamics and nucleosynthesis of neutrino-driven winds (NDWs) from proto neutron stars (PNSs). For a typical 1.4 Mo PNS model, we find that the nucleosyn- thesis products are closely related to the luminosity of neutrinos and anti-neutrinos. The lower the luminosity is, the larger is the effect on the NDWs caused by weak in- teractions and MFs. At a high anti-neutrino luminosity of typically 8 × 1051 erg s-1, neutrinos and anti-neutrinos dominate the processes in an NDW and the MFs hardly change the wind's properties. But at a low anti-neutrino luminosity of 1051 erg s-1 at the late stage of an NDW the mass of the product and process of nucleosynthesis are changed significantly in strong MFs. Therefore, in most of the models considered for the NDWs from PNSs, based on our calculations, the influences of MFs and the net weak interactions on the nucleosynthesis are not significant.展开更多
The quasi-periodic oscillations (QPOs) in black hole (BH) systems with different scales are interpreted based on the magnetic reconnection of large-scale mag- netic fields generated by toroidal electric currents f...The quasi-periodic oscillations (QPOs) in black hole (BH) systems with different scales are interpreted based on the magnetic reconnection of large-scale mag- netic fields generated by toroidal electric currents flowing in the inner region of the accretion disk, where the current density is assumed to be proportional to the mass density of the accreting plasma. The magnetic connection (MC) is taken into account in resolving dynamic equations describing the accretion disk, in which the MC be- tween the inner and outer disk regions, between the plunging region and the disk, and between the BH horizon and the disk are involved. It turns out that a single QPO frequency associated with several BH systems with different scales can be fitted by in- voking the magnetic reconnection due to the MC between the inner and outer regions of the disk, including the BH binaries XTE J1859+226, XTE J1650-500 and GRS 1915+105 and the massive BHs in NGC 5408 X-1 and RE J1034+396. In addition, the X-ray spectra corresponding to the QPOs for these sources are fitted based on the typical disk-corona model.展开更多
We show that the explosive transition of the neutron star (NS) to a quark star (QS) (a Quark Nova) in Cassiopeia A (Cas A) a few days following the supernova (SN) proper can account for several of the puzzli...We show that the explosive transition of the neutron star (NS) to a quark star (QS) (a Quark Nova) in Cassiopeia A (Cas A) a few days following the supernova (SN) proper can account for several of the puzzling kinematic and nucleosynthetic features that are observed. The observed decoupling between Fe and 44Ti and the lack of Fe emission within 44Ti regions is expected in the QN model owing to the spallation of the inner SN ejecta by relativistic QN neutrons. Our model predicts the 44Ti to be more prominent to the NW of the central compact object (CCO) than in the SE and little of it along the NE-SW jets, in agreement with NuStar observations. Other intriguing features of Cas A are addressed, such as the lack of a pulsar wind nebula and the reported few percent drop in the CCO temperature over a period of 10 yr.展开更多
Motivated by the Fermi observations of some γ-ray pulsars in which the phases of radio and γ-ray peaks are almost the same, we investigate the outer gap model in a retarded dipole with a current-induced magnetic fie...Motivated by the Fermi observations of some γ-ray pulsars in which the phases of radio and γ-ray peaks are almost the same, we investigate the outer gap model in a retarded dipole with a current-induced magnetic field and apply it to explain pulsed γ-ray properties of the Crab pulsar. Our results show that the observed γ-ray energy-dependent light curves, which almost align with the radio light curve and phase averaged spectrum for the Crab pulsar, are reproduced well.展开更多
Oscillations of the solar-like star HD 49933 have been thoroughly observed by CoRot. Two dozen frequency shifts, which are closely related to the change in magnetic activity, have been measured. To explore the effects...Oscillations of the solar-like star HD 49933 have been thoroughly observed by CoRot. Two dozen frequency shifts, which are closely related to the change in magnetic activity, have been measured. To explore the effects of magnetic activity on frequency shifts, we calculate frequency shifts for the radial and l=1 p-modes of HD 49933 with the general variational method, which evaluates the shifts using a spa- tial integral of the product of a kernel and some sources. The theoretical frequency shifts reproduce the observation well. The magnitudes and positions of the sources are determined according to a χ2 criterion. We predict the source that contributes to both the l = 0 and l= 1 modes is located 0.48 - 0.62 Mm below the surface of the star. In addition, based on the assumption that A0 is proportional to the change in the MglI activity index △iMgⅡ, we obtain that the change in MgⅡ index between the minimum and maximum of the cycle during the period of HD 49933 is about 0.665. The magnitude of the frequency shifts compared to the Sun already demonstrates that HD 49933 is much more active than the Sun, which is further confirmed in this pa- per. Furthermore, our calculation of the frequency shifts for l = 1 modes indicates the variation of turbulent velocity in the stellar convective zone may be an important source for the l = 1 shifts.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 11173011,11143001,11103003 and 11045004)the National Basic Research Program of China (973 Program,2009CB824800)the Fundamental Research Funds for theCentral Universities (HUST:2011TS159)
文摘A model of low-frequency quasi-periodic oscillations (LFQPOs) of black hole X-ray binaries (BHXBs) is proposed based on the perturbed magnetohydrody- namic equations of an accretion disk. It turns out that the LFQPO frequencies of some BHXBs can be fitted by the frequencies of the toroidal Alfv6n wave oscillation cor- responding to the maximal radiation flux. In addition, the positive correlation of the LFQPO frequencies with the radiation flux from an accretion disk is well interpreted.
基金supported by the National Natural Science Foundation of China(Grant Nos. 11073042,11273020)the National Basic Research Program of China (973 Project,2009CB824800)+2 种基金China Postdoctoral Science Foundation funded project (2012T50446)the Fund of Sichuan Provincial Education Department (10ZC014)the Science and Technological Foundation of CWNU (11B008)
文摘Solving Newtonian steady-state wind equations while considering the ac- curate weak interaction rates and magnetic fields (MFs) of young neutron stars, we study the dynamics and nucleosynthesis of neutrino-driven winds (NDWs) from proto neutron stars (PNSs). For a typical 1.4 Mo PNS model, we find that the nucleosyn- thesis products are closely related to the luminosity of neutrinos and anti-neutrinos. The lower the luminosity is, the larger is the effect on the NDWs caused by weak in- teractions and MFs. At a high anti-neutrino luminosity of typically 8 × 1051 erg s-1, neutrinos and anti-neutrinos dominate the processes in an NDW and the MFs hardly change the wind's properties. But at a low anti-neutrino luminosity of 1051 erg s-1 at the late stage of an NDW the mass of the product and process of nucleosynthesis are changed significantly in strong MFs. Therefore, in most of the models considered for the NDWs from PNSs, based on our calculations, the influences of MFs and the net weak interactions on the nucleosynthesis are not significant.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11173011, 11143001, 11103003 and 11045004)the National Basic Research Program of China (973 program, 2009CB824800)the Fundamental Research Funds for the Central Universities (HUST: 2011TS159)
文摘The quasi-periodic oscillations (QPOs) in black hole (BH) systems with different scales are interpreted based on the magnetic reconnection of large-scale mag- netic fields generated by toroidal electric currents flowing in the inner region of the accretion disk, where the current density is assumed to be proportional to the mass density of the accreting plasma. The magnetic connection (MC) is taken into account in resolving dynamic equations describing the accretion disk, in which the MC be- tween the inner and outer disk regions, between the plunging region and the disk, and between the BH horizon and the disk are involved. It turns out that a single QPO frequency associated with several BH systems with different scales can be fitted by in- voking the magnetic reconnection due to the MC between the inner and outer regions of the disk, including the BH binaries XTE J1859+226, XTE J1650-500 and GRS 1915+105 and the massive BHs in NGC 5408 X-1 and RE J1034+396. In addition, the X-ray spectra corresponding to the QPOs for these sources are fitted based on the typical disk-corona model.
基金supported by operating grants from the National Science and Engineering Research Council of Canada (NSERC)
文摘We show that the explosive transition of the neutron star (NS) to a quark star (QS) (a Quark Nova) in Cassiopeia A (Cas A) a few days following the supernova (SN) proper can account for several of the puzzling kinematic and nucleosynthetic features that are observed. The observed decoupling between Fe and 44Ti and the lack of Fe emission within 44Ti regions is expected in the QN model owing to the spallation of the inner SN ejecta by relativistic QN neutrons. Our model predicts the 44Ti to be more prominent to the NW of the central compact object (CCO) than in the SE and little of it along the NE-SW jets, in agreement with NuStar observations. Other intriguing features of Cas A are addressed, such as the lack of a pulsar wind nebula and the reported few percent drop in the CCO temperature over a period of 10 yr.
基金partially supported by the National Natural Science Foundation of China(Grant Nos.11173020 and 11433004)the Top Talents Program of Yunnan Province
文摘Motivated by the Fermi observations of some γ-ray pulsars in which the phases of radio and γ-ray peaks are almost the same, we investigate the outer gap model in a retarded dipole with a current-induced magnetic field and apply it to explain pulsed γ-ray properties of the Crab pulsar. Our results show that the observed γ-ray energy-dependent light curves, which almost align with the radio light curve and phase averaged spectrum for the Crab pulsar, are reproduced well.
基金Supported by the National Natural Science Foundation of China
文摘Oscillations of the solar-like star HD 49933 have been thoroughly observed by CoRot. Two dozen frequency shifts, which are closely related to the change in magnetic activity, have been measured. To explore the effects of magnetic activity on frequency shifts, we calculate frequency shifts for the radial and l=1 p-modes of HD 49933 with the general variational method, which evaluates the shifts using a spa- tial integral of the product of a kernel and some sources. The theoretical frequency shifts reproduce the observation well. The magnitudes and positions of the sources are determined according to a χ2 criterion. We predict the source that contributes to both the l = 0 and l= 1 modes is located 0.48 - 0.62 Mm below the surface of the star. In addition, based on the assumption that A0 is proportional to the change in the MglI activity index △iMgⅡ, we obtain that the change in MgⅡ index between the minimum and maximum of the cycle during the period of HD 49933 is about 0.665. The magnitude of the frequency shifts compared to the Sun already demonstrates that HD 49933 is much more active than the Sun, which is further confirmed in this pa- per. Furthermore, our calculation of the frequency shifts for l = 1 modes indicates the variation of turbulent velocity in the stellar convective zone may be an important source for the l = 1 shifts.