Iron(Fe)-based alloys,which have been widely used as structural materials in nuclear reactors,can significantly change their microstructure properties and macroscopic properties under high flux neutron irradiation dur...Iron(Fe)-based alloys,which have been widely used as structural materials in nuclear reactors,can significantly change their microstructure properties and macroscopic properties under high flux neutron irradiation during operation,thus,the problems associated with the safe operation of nuclear reactors have been put forward naturally.In this work,a molecular dynamics simulation approach combined with electronic effects is developed for investigating the primary radiation damage process inα-Fe.Specifically,the influence of electronic effects on the collision cascade in Fe is systematically evaluated based on two commonly used interatomic potentials for Fe.The simulation results reveal that both electronic stopping(ES)and electron-phonon coupling(EPC)can contribute to the decrease of the number of defects in the thermal spike phase.The application of ES reduces the number of residual defects after the cascade evolution,whereas EPC has a reverse effect.The introduction of electronic effects promotes the formation of the dispersive subcascade:ES significantly changes the geometry of the damaged region in the thermal spike phase,whereas EPC mainly reduces the extent of the damaged region.Furthermore,the incorporation of electronic effects effectively mitigates discrepancies in simulation outcomes when using different interatomic potentials.展开更多
Angelica sinensis polysaccharide(ASP) was extracted from Angelica sinensis by boiling water. An Angelica sinensis polysaccharide-iron complex(APC) was prepared under the alkaline condition by adding a ferric chlor...Angelica sinensis polysaccharide(ASP) was extracted from Angelica sinensis by boiling water. An Angelica sinensis polysaccharide-iron complex(APC) was prepared under the alkaline condition by adding a ferric chloride solution to the ASP solution. Then some identifiable properties of the complex were studied. The content of iron( Ⅲ ) in the complex was determined with iodometry. The thermal property, the microscopic structure, the spectral characteristics, and N, C, H contents of the complex were examined by a variety of techniques including DSC, TEM, IR, NMR, and elemental analysis. The content of iron( Ⅲ ) in the complex ranges from 10% to 40%. The DSC result shows that the melting point of the complex is about 450 ℃. The TEM result shows that the complex has an iron( Ⅲ ) core(β-FeOOH core) linked by hydroxy and oxy bridges, with the polysaccharide chains attached to the surface of the core. The IR and NMR results also show that there is a β-FeOOH core in the complex. The elemental analysis shows that the contents of N, C, H in the complex are, respectively, lower than those of N, C, H in ASP. All our studies indicate that the APC consists of a β-FeOOH core surrounded by ASP.展开更多
Thermal shock behaviour was investigated for two morphologically different composites comprising an alumina matrix and 20 vol. pct Fe particles for a wide range of quenching temperature differences (AT=100~800癈) and ...Thermal shock behaviour was investigated for two morphologically different composites comprising an alumina matrix and 20 vol. pct Fe particles for a wide range of quenching temperature differences (AT=100~800癈) and compared to a monolithic alumina. The retained strength and critical quenching temperature difference, Tcr of the two composites were a significant improvement over the values for the respective monolithic alumina. Crack lengths and densities were shown to be greater for the alumina than for the two composites at all quenching temperature differences. The thermal shock resistance parameters for monolithic alumina and the two composites were calculated according to their mechanical and physical properties. The calculated results agree well with the experimental one and indicate possible explanations for the differences in thermal shock behaviour.展开更多
A cobalt-iron alloy thin-film electrode-based electrochemical hydrogen-phosphate-ion sensor was prepared by electrodepositing on an Au-coated Al2O3 substrate from an aqueous solution of metal-salts. The use of a cobal...A cobalt-iron alloy thin-film electrode-based electrochemical hydrogen-phosphate-ion sensor was prepared by electrodepositing on an Au-coated Al2O3 substrate from an aqueous solution of metal-salts. The use of a cobalt-iron alloy electrode greatly improved the hydrogen-ion sensor response performance, i.e., the sensor worked stably for more than 7 weeks and showed a quick response time of several seconds. Among the cobalt and iron alloy systems tested, the electrodeposited Co58Fe42 thin-film electrode showed the best EMF response characteristics, i.e., the sensor exhibited a linear potentiometric response to hydrogen-phosphate ion at the concentration range between 1.0 × 10–5 and 1.0 × 10–2 M with the slope of –43 mV/decade at pH 5.0 and at 30℃. A sensing mechanism of the Co-based potentiometric hydrogen-phosphate ion sensor was proposed on the basis of results of instrumental analysis.展开更多
Tris(d,d-dicampholylmethanato) iron (Ⅲ) complex, Fe(dcm)3, was found to be an excellent catalyst for asymmetric oxygenation of styrene analogues into the corresponding epoxides. Good chemical yields and higher ...Tris(d,d-dicampholylmethanato) iron (Ⅲ) complex, Fe(dcm)3, was found to be an excellent catalyst for asymmetric oxygenation of styrene analogues into the corresponding epoxides. Good chemical yields and higher enantioselectivity were obtained with combined use of molecular oxygen and an aldehyde at 30℃, Some factors influencing enantioselectivity were discussed.展开更多
Nickel-iron type cast iron electrodes are widely used for welding QT600-3 nodular iron.Nevertheless,the research work has demonstrated that the strength of these heterogeneous welded joints is low.In this paper,the un...Nickel-iron type cast iron electrodes are widely used for welding QT600-3 nodular iron.Nevertheless,the research work has demonstrated that the strength of these heterogeneous welded joints is low.In this paper,the uni- axial tension of the joints is studied by the Moire fringe method,and the dis- placement,strain and stress in the total fields are obtaind.Based on the uneven distribution of strain and stress,the reason of crack initiation and propagation is discussed.Through examining the appearance of the fracture by scanning elec- tron microscope,a lot of spherical substances distributed on the fracture surface are found,which may be another reason leading to cracking of the welded joint under the lower tensile stress.These new findings will help to improve the properties of nickel-iron type cast iron electrodes and the strength of the welded joint.展开更多
The characteristic of groundwater belongs to low iron but high manganese in Shenyang Hunnan New Developed Area.The first stage engineering of The WTP of Shenyang Hunnan industry Area were designed according the techno...The characteristic of groundwater belongs to low iron but high manganese in Shenyang Hunnan New Developed Area.The first stage engineering of The WTP of Shenyang Hunnan industry Area were designed according the technology of aerated-contact oxidation,and the water quality couldn’t reach to the standard after the WTP putted into production,1996.展开更多
The solid structures and thermostabilities of Cu-Fe-O and Cu-Fe-Ce-O supported on alumina were studied by XRD, ESR, Mossbauer and TPR techniques. The studies indicate that there are Fe2CuO4, CuO and alpha-Fe2O3 phases...The solid structures and thermostabilities of Cu-Fe-O and Cu-Fe-Ce-O supported on alumina were studied by XRD, ESR, Mossbauer and TPR techniques. The studies indicate that there are Fe2CuO4, CuO and alpha-Fe2O3 phases in Cu-Fe-O with the granula of less than 13 nm. With the catalyst pretreatment temperature rising, the crystallite of Fe2CuO4 in the catalysts grows up and that of CuO disappears gradually. The presence of Ce leads to the increase of Cu2+ concentration, inhibits the crystal growth of CuO and Fe2CuO4 in the catalyst except that of Fe2O3, and eliminates the difference for reductive reaction of oxygen in Fe-O and Cu-O. At 800 degrees C, the crystal growth of Fe2O3 in Cu-Fe-Ce-O is slower than that in Cu-Fe-O, i.e., CeO2 in Cu-Fe-Ce-O inhibits the growth of Fe2O3 phase effectively, and enhances the thermostability of catalysts so as to avoid the sintering of active elements in catalysts. CeO2 promotes the reducibility of catalysts at lower temperature.展开更多
The hydrogen content in liquid binary aluminum alloys with 1,3,5 and 8 wt% iron has been determined in the temperature range from 973K to 1103K.The hydrogen content in molten Al-Fe alloys increases remarkably when the...The hydrogen content in liquid binary aluminum alloys with 1,3,5 and 8 wt% iron has been determined in the temperature range from 973K to 1103K.The hydrogen content in molten Al-Fe alloys increases remarkably when the temperature of the melt rises to about 1053K.This work indicates that the alloying element iron plays an important role in hydrogen content in superheated Al-Fe alloy melts below about 1053K.The results make it clear that the hydrogen content in the melt aluminum reduces with the increasing element levels.A conclusion is drawn that the degree of gassing in molten Al-Fe alloys is bound up with the properties of oxide film of aluminum alloy melts.The element iron has no effect on the compact structure of oxide film in aluminum melts.The effects of alloying element are theoretically analyzed in terms of Wagner interaction parameter.According to the values of the first order interaction parameter,it is concluded that the interaction between iron atom and aluminum is much stronger than that between hydrogen atom and aluminum,and the addition of the alloying element decreases the affinity of liquid aluminum for hydrogen.展开更多
The effects of the partial substitution of element M(M=Cr,V,Mn,x=0.05;Zr,Ga,x=0.017; Si,x=0.15;Co,x=0.10)for Fe in samarium-iron-nitride Sm_2(Fe_(1-x)M_x)_(17)N_y compounds on their stabilities and Curie temperatures ...The effects of the partial substitution of element M(M=Cr,V,Mn,x=0.05;Zr,Ga,x=0.017; Si,x=0.15;Co,x=0.10)for Fe in samarium-iron-nitride Sm_2(Fe_(1-x)M_x)_(17)N_y compounds on their stabilities and Curie temperatures have been studied.It is found that Co,Ga can raise the Curie temperature of the compounds.The initial decomposition temperatures cannot be raised significantly by all the studied elements except Co.The result contradicts the formation enthalpy consideration.The final decomposition tempera- tures can be raised by all of the substitution elements.The effects of atmospheres on their decomposition be- havior were also studied.The results show that oxidation is the major reason for magnetic deterioration of the powder heated in air.Compared with nitrogen atmosphere,argon or vacuum helps to delay the decompo- sition of the compounds.展开更多
According to the chemical and phase composition of the nickel-copper-iron matte containing precious metals and the progress in enrichment of precious metals from the nickel-copper-iron matte containing precious metals...According to the chemical and phase composition of the nickel-copper-iron matte containing precious metals and the progress in enrichment of precious metals from the nickel-copper-iron matte containing precious metals at home and abroad, this paper put forward the process route of enrichment of precious metals and selectively leaching of base metals from the nickel-copper-iron matte by sulfuric acid and sodium hypochlorite. The effects of particle size, leaching temperature, leaching time, amount of sulfuric acid and sodium hypochlorite on the leaching rate of nickel, cobalt, copper and iron are mainly discussed. The results show that raw material particle size has significantly effects on the leaching rate of base metals, high leaching rate of base metals and enrichment of precious metals are obtained with the suitable particle size. Through the experiments, the reasonable experiment parameters and conditions were determined as fellows: particle size of-200 to +250 mesh, leaching temperature 95℃ , leaching time 5 h, sulfuric acid concentration 30%, adding amount of sodium hypochlorite 3 times of matte weight. Under these experiment parameters and conditions, the leaching rate of nickel, cobalt, copper and iron were 97.39%, 96.24%, 98.30% and 99.01%, respectively. The content of nickel, cobalt, copper, iron in the leaching residues was 8.15%, 0.23%, 1.40% and 0.24%, respectively. The content of Pt, Pd, Au, Ag and Rh in the leaching residues was 247 g/t, 521 g/t, 112 g/t, 494 g/t and 24 g/t, respectively. The content of Pt, Pd, Au, Ag and Rh in the leaching solution was <0.0005 g/L, 0.0023 g/L, 0.0007 g/L, <0.0005 g/L and 0.00017 g/L, respectively. This process has advantages as follows: a small investment, simple technology, high enrichment efficiency.展开更多
A series of biopolymer based complex were manufactured by coordinating iron ions to the abundant amino-and sulfur-containing groups in the modified wool and used as heterogeneous Fenton-like photocatalyst for 4-chloro...A series of biopolymer based complex were manufactured by coordinating iron ions to the abundant amino-and sulfur-containing groups in the modified wool and used as heterogeneous Fenton-like photocatalyst for 4-chlorophenol (4-CP) degradation in the presence of H2O2. Hydroxylamine hydrochloride (NH2OH center dot HCl) or acrylic acid was employed to modify the natural wool to strengthen the interaction with iron and to reinforce the structural stability. The NH2OH center dot HCl modified wool based complex showed the best catalytic performance for 4-CP degradation. The strong coordination between iron and great number of hydroxamic acid in this modified complex leads to the least iron leaching during the tests. HO center dot species was confirmed to be the dominant reactive oxidant in the decontamination process. The approach presented in this study can provide a new approach for developing novel bioployermer-based photocatalysts for efficient degradation of toxic organic pollutants such as 4-CP. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
The layer structure of low-carbon steel containing RE by high-temperature (T>1200 ℃) carburizing of liquid cast-iron was studied and the diffusion activation energy of carbon was calculated by metallographic micr...The layer structure of low-carbon steel containing RE by high-temperature (T>1200 ℃) carburizing of liquid cast-iron was studied and the diffusion activation energy of carbon was calculated by metallographic microscpe, chemical analysis etc. The result shows that the technology of carburizing in liquid cast-iron can expedite caburization distinctly and changes the carburizing layer structure. The carburizing rate is 60~80 times of that of the traditional technology, and there is about 43% decrease in the activation energy compared with gas-carburization. In outer structure layer, cementite is formed simultaneously both on the crystal boundary reticularly and inside the crystal grains stripedly. In inner carburizing layer, there is undissolved blocky ferrite in reticular cementite. Besides, rare earth element can expedite carburization process.展开更多
Carbonyl-iron/Fe91Si9 composites for thin microwave absorbers were firstly prepared by a simple blending technique. The patterns of carbonyl-iron and Fe91Si9 were characterized by scanning electron microscope (SEM). T...Carbonyl-iron/Fe91Si9 composites for thin microwave absorbers were firstly prepared by a simple blending technique. The patterns of carbonyl-iron and Fe91Si9 were characterized by scanning electron microscope (SEM). The complex permittivity, permeability and microwave absorption properties of the composites were studied in the frequency range of 2 - 7GHz by a HP8720B vector network analyzer. Complex permittivity and permeability decrease gradually with increasing weight percentage of Fe91Si9 in the composites, the variation of permittivity was very large but the variation of permeability was very small. The composites exhibited excellent microwave absorption properties with increasing Fe91Si9 content. The reflection loss (RL) values less than –20 dB were obtained in the 3.7 - 6.7 GHz frequency range for the paraffin matrix composites with 80 wt% carbonyl-iron/Fe91Si9 powders (weight ratio of carbonyl-iron to Fe91Si9 was 1:1), with thickness of 4.0 - 2.4 mm, respectively. The optimal RL of –45 dB was observed at 5.2 GHz with a matching thickness (dm) of 3.0 mm. The excellent microwave absorption properties were attributed to a better electromagnetic impedance match and a higher electric resistivity.展开更多
The composition,structure and micro-morphology of magnesium- iron- aluminum composite oxides were investigated using various methods such as XRF,SEM,EDS,XRD and KMn O4-titration. Compared to hercynite,the composite ox...The composition,structure and micro-morphology of magnesium- iron- aluminum composite oxides were investigated using various methods such as XRF,SEM,EDS,XRD and KMn O4-titration. Compared to hercynite,the composite oxides have completely different phases including solid solution( Mg O)0. 77( Fe O)0. 23,composite spinel Mg Fe0. 2Al1. 8O4 and a small amount of Mg Fe2O4. The composite oxides exhibit excellent corrosion resistance to cement clinker and potassium salts.The products produced by magnesite and the composite oxides show better performance than magnesia- hercynite bricks,especially the corrosion resistance and thermal shock resistance.展开更多
X-ray diffraction was utilized to measure the residual stress of 45 mm UNS N08810 plates after post-weld heat treatment at temperatures of 680℃ and 900℃, which showed reductions of 86.9% and 71.6% in the residual st...X-ray diffraction was utilized to measure the residual stress of 45 mm UNS N08810 plates after post-weld heat treatment at temperatures of 680℃ and 900℃, which showed reductions of 86.9% and 71.6% in the residual stress, respectively. This indicates that post-weld heat treatment can play a significant role in reducing residual stress, while no significant effects on tensile stress and micro-hardness of the welding joint were observed after treatment.展开更多
With accurate battery modeling, circuit designers and automotive control algorithms developers can predict and optimize the battery performance. In this paper, an experimental verification of an accurate model for pri...With accurate battery modeling, circuit designers and automotive control algorithms developers can predict and optimize the battery performance. In this paper, an experimental verification of an accurate model for prismatic high current lithium-iron-phosphate battery is presented. An automotive TSLFP160AHA lithium-iron-phosphate battery bank is tested. The different capacity GBDLFMP60AH battery bank is used to validate the model extracted from the former battery. Effect of current, stacking and SOC upon the battery parameters performance is investigated. Six empirical equations are obtained to extract the prismatic type LiFePO4 model as a function of SOC. Based on comparing the measured and simulated data, a well accuracy of less than 50mV maximum error voltage with 1.7% operating time error referred to the measured data is achieved. The model can be easily modified to simulate different batteries and can be extended for wide ranges of different currents.展开更多
The main objective of this study was to investigate copper-Nickle-Iron bearing rocks of the northern Kenya, and understand their mode of formation. The area of study is bounded by latitudes 2º52'00"N...The main objective of this study was to investigate copper-Nickle-Iron bearing rocks of the northern Kenya, and understand their mode of formation. The area of study is bounded by latitudes 2º52'00"N and 1º52'00"N and longitudes 37º19'00"E and 37º36'00"E, South West of Marsabit town. The methods involved geological field mapping between September, 2020 and December 2020. Elemental analyses of the samples were done using an XRF. Pearsonian correlation on the analyzed elements was done using Oasis Montaj 8.4. Fabric8 software was used to analyze structural data. The area comprises metamorphic, igneous and sedimentary rocks. Metamorphic rocks include biotite hornblende gneisses, biotite gneisses, biotite muscovite gneisses and marbles. Basalts of different mineralogy were also found in the area. Colluvium and alluvium sediments were found covering some of the metamorphic rocks in some areas. Malachite occurs in gneisses in the central part of the area. The area has undergone deformation, which includes jointing and folding. The fold axis trend in the North-South direction and plunges to the southern part of the area. Correlation of the elements shows that there is a positive correlation of Copper-Nickel-Iron. This indicates similar mode of delivery within the host rocks. Kriging indicates spatial distribution of these elements within the study area. The average size of distribution can easily be computed from the maps produced by kriging.展开更多
Polymer-supported hydrous iron oxides(HFOs) are promising for heavy metals removal from aqueous systems.The ubiquitous inorganic ligands, e.g., sulfate, are expected to exert considerable impacts on pollutants removal...Polymer-supported hydrous iron oxides(HFOs) are promising for heavy metals removal from aqueous systems.The ubiquitous inorganic ligands, e.g., sulfate, are expected to exert considerable impacts on pollutants removal by these hybrid sorbents. Herein, we obtained a hybrid sorbent HFO-PS by encapsulating nanosized HFO into macroporous polystyrene(PS) resin. Both batch and column sorption experiments of Cu(Ⅱ) by HFO-PS were carried out in the presence of sulfate. Obviously, the presence of sulfate is favorable for Cu(Ⅱ) sorption onto HFO-PS.The performances of column Cu(Ⅱ) removal were fitted and predicted with Adams–Bohart, Clark, Thomas and BDST models. Thomas model is suggested best-fit to predict the breakthrough curves. Besides, a linear correlation is observed between breakthrough time and column length based on BDST model, which might be useful for predicting the breakthrough time for Cu(Ⅱ) removal by HFO-PS.展开更多
Also known as a prebiotic, fructooligosaccharide (FOS) resists digestion by gastric acid and pancreatic enzymes in vivo, but is preferentially fermented by beneficial intestinal bacteria once it reaches the colon. Whi...Also known as a prebiotic, fructooligosaccharide (FOS) resists digestion by gastric acid and pancreatic enzymes in vivo, but is preferentially fermented by beneficial intestinal bacteria once it reaches the colon. While some studies suggest that FOS and its fermentation products may influence the iron absorption process, the effects of prolonged FOS supplementation on iron status remain unclear. The objective of this study was therefore to determine the enhancing effects of FOS supplementation on the iron status of anemic rats. Male Sprague-Dawley rats receiving a low-iron diet (12 μg/g) for 14 days showed significantly lower hemoglobin concentration, as well as lower tissue non-heme iron levels than rats receiving a regular diet (45 μg/g), confirming iron-deficiency anemia. On the first day of the feeding trial, two groups of anemic rats (n = 6) were fed the same low-iron diet with or without FOS supplementation, while two other groups of anemic rats were switched to the regular diet with or without FOS supplementation to allow recovery. FOS was provided to the rats by dissolving in water at 5% (w/v). Anemic rats fed the low-iron diet showed a mild increase (p < 0.05) in hemoglobin level after 21 days of FOS supplementation when compared to rats without FOS. For anemic rats switched to the regular diet, hemoglobin level returned to normal after 14 days and FOS supplementation showed no additional effects. Our results suggest that FOS supplementation has a mild enhancing effect on the iron status of anemic subjects on a low-iron diet.展开更多
基金Project supported by the National MCF Energy Research and Development Program of China(Grant Nos.2022YFE03200200 and 2018YFE0308101)the National Natural Science Foundation of China(Grant No.12105194)the Natural Science Foundation of Sichuan Province,China(Grant Nos.2022NSFSC1265 and 2022NSFSC1251).
文摘Iron(Fe)-based alloys,which have been widely used as structural materials in nuclear reactors,can significantly change their microstructure properties and macroscopic properties under high flux neutron irradiation during operation,thus,the problems associated with the safe operation of nuclear reactors have been put forward naturally.In this work,a molecular dynamics simulation approach combined with electronic effects is developed for investigating the primary radiation damage process inα-Fe.Specifically,the influence of electronic effects on the collision cascade in Fe is systematically evaluated based on two commonly used interatomic potentials for Fe.The simulation results reveal that both electronic stopping(ES)and electron-phonon coupling(EPC)can contribute to the decrease of the number of defects in the thermal spike phase.The application of ES reduces the number of residual defects after the cascade evolution,whereas EPC has a reverse effect.The introduction of electronic effects promotes the formation of the dispersive subcascade:ES significantly changes the geometry of the damaged region in the thermal spike phase,whereas EPC mainly reduces the extent of the damaged region.Furthermore,the incorporation of electronic effects effectively mitigates discrepancies in simulation outcomes when using different interatomic potentials.
文摘Angelica sinensis polysaccharide(ASP) was extracted from Angelica sinensis by boiling water. An Angelica sinensis polysaccharide-iron complex(APC) was prepared under the alkaline condition by adding a ferric chloride solution to the ASP solution. Then some identifiable properties of the complex were studied. The content of iron( Ⅲ ) in the complex was determined with iodometry. The thermal property, the microscopic structure, the spectral characteristics, and N, C, H contents of the complex were examined by a variety of techniques including DSC, TEM, IR, NMR, and elemental analysis. The content of iron( Ⅲ ) in the complex ranges from 10% to 40%. The DSC result shows that the melting point of the complex is about 450 ℃. The TEM result shows that the complex has an iron( Ⅲ ) core(β-FeOOH core) linked by hydroxy and oxy bridges, with the polysaccharide chains attached to the surface of the core. The IR and NMR results also show that there is a β-FeOOH core in the complex. The elemental analysis shows that the contents of N, C, H in the complex are, respectively, lower than those of N, C, H in ASP. All our studies indicate that the APC consists of a β-FeOOH core surrounded by ASP.
基金This work was supported by the Trans-Century Training Pro-gram Foundation for the Talents by the Ministry of Education of China, the National Natural Science Foundation of China (No. 50172010), the Natural Science Foundation of Liaoning Province (No. 200
文摘Thermal shock behaviour was investigated for two morphologically different composites comprising an alumina matrix and 20 vol. pct Fe particles for a wide range of quenching temperature differences (AT=100~800癈) and compared to a monolithic alumina. The retained strength and critical quenching temperature difference, Tcr of the two composites were a significant improvement over the values for the respective monolithic alumina. Crack lengths and densities were shown to be greater for the alumina than for the two composites at all quenching temperature differences. The thermal shock resistance parameters for monolithic alumina and the two composites were calculated according to their mechanical and physical properties. The calculated results agree well with the experimental one and indicate possible explanations for the differences in thermal shock behaviour.
文摘A cobalt-iron alloy thin-film electrode-based electrochemical hydrogen-phosphate-ion sensor was prepared by electrodepositing on an Au-coated Al2O3 substrate from an aqueous solution of metal-salts. The use of a cobalt-iron alloy electrode greatly improved the hydrogen-ion sensor response performance, i.e., the sensor worked stably for more than 7 weeks and showed a quick response time of several seconds. Among the cobalt and iron alloy systems tested, the electrodeposited Co58Fe42 thin-film electrode showed the best EMF response characteristics, i.e., the sensor exhibited a linear potentiometric response to hydrogen-phosphate ion at the concentration range between 1.0 × 10–5 and 1.0 × 10–2 M with the slope of –43 mV/decade at pH 5.0 and at 30℃. A sensing mechanism of the Co-based potentiometric hydrogen-phosphate ion sensor was proposed on the basis of results of instrumental analysis.
文摘Tris(d,d-dicampholylmethanato) iron (Ⅲ) complex, Fe(dcm)3, was found to be an excellent catalyst for asymmetric oxygenation of styrene analogues into the corresponding epoxides. Good chemical yields and higher enantioselectivity were obtained with combined use of molecular oxygen and an aldehyde at 30℃, Some factors influencing enantioselectivity were discussed.
文摘Nickel-iron type cast iron electrodes are widely used for welding QT600-3 nodular iron.Nevertheless,the research work has demonstrated that the strength of these heterogeneous welded joints is low.In this paper,the uni- axial tension of the joints is studied by the Moire fringe method,and the dis- placement,strain and stress in the total fields are obtaind.Based on the uneven distribution of strain and stress,the reason of crack initiation and propagation is discussed.Through examining the appearance of the fracture by scanning elec- tron microscope,a lot of spherical substances distributed on the fracture surface are found,which may be another reason leading to cracking of the welded joint under the lower tensile stress.These new findings will help to improve the properties of nickel-iron type cast iron electrodes and the strength of the welded joint.
文摘The characteristic of groundwater belongs to low iron but high manganese in Shenyang Hunnan New Developed Area.The first stage engineering of The WTP of Shenyang Hunnan industry Area were designed according the technology of aerated-contact oxidation,and the water quality couldn’t reach to the standard after the WTP putted into production,1996.
文摘The solid structures and thermostabilities of Cu-Fe-O and Cu-Fe-Ce-O supported on alumina were studied by XRD, ESR, Mossbauer and TPR techniques. The studies indicate that there are Fe2CuO4, CuO and alpha-Fe2O3 phases in Cu-Fe-O with the granula of less than 13 nm. With the catalyst pretreatment temperature rising, the crystallite of Fe2CuO4 in the catalysts grows up and that of CuO disappears gradually. The presence of Ce leads to the increase of Cu2+ concentration, inhibits the crystal growth of CuO and Fe2CuO4 in the catalyst except that of Fe2O3, and eliminates the difference for reductive reaction of oxygen in Fe-O and Cu-O. At 800 degrees C, the crystal growth of Fe2O3 in Cu-Fe-Ce-O is slower than that in Cu-Fe-O, i.e., CeO2 in Cu-Fe-Ce-O inhibits the growth of Fe2O3 phase effectively, and enhances the thermostability of catalysts so as to avoid the sintering of active elements in catalysts. CeO2 promotes the reducibility of catalysts at lower temperature.
文摘The hydrogen content in liquid binary aluminum alloys with 1,3,5 and 8 wt% iron has been determined in the temperature range from 973K to 1103K.The hydrogen content in molten Al-Fe alloys increases remarkably when the temperature of the melt rises to about 1053K.This work indicates that the alloying element iron plays an important role in hydrogen content in superheated Al-Fe alloy melts below about 1053K.The results make it clear that the hydrogen content in the melt aluminum reduces with the increasing element levels.A conclusion is drawn that the degree of gassing in molten Al-Fe alloys is bound up with the properties of oxide film of aluminum alloy melts.The element iron has no effect on the compact structure of oxide film in aluminum melts.The effects of alloying element are theoretically analyzed in terms of Wagner interaction parameter.According to the values of the first order interaction parameter,it is concluded that the interaction between iron atom and aluminum is much stronger than that between hydrogen atom and aluminum,and the addition of the alloying element decreases the affinity of liquid aluminum for hydrogen.
文摘The effects of the partial substitution of element M(M=Cr,V,Mn,x=0.05;Zr,Ga,x=0.017; Si,x=0.15;Co,x=0.10)for Fe in samarium-iron-nitride Sm_2(Fe_(1-x)M_x)_(17)N_y compounds on their stabilities and Curie temperatures have been studied.It is found that Co,Ga can raise the Curie temperature of the compounds.The initial decomposition temperatures cannot be raised significantly by all the studied elements except Co.The result contradicts the formation enthalpy consideration.The final decomposition tempera- tures can be raised by all of the substitution elements.The effects of atmospheres on their decomposition be- havior were also studied.The results show that oxidation is the major reason for magnetic deterioration of the powder heated in air.Compared with nitrogen atmosphere,argon or vacuum helps to delay the decompo- sition of the compounds.
基金The National Basic Research Program (973 Plan)of China (2012CB724201)
文摘According to the chemical and phase composition of the nickel-copper-iron matte containing precious metals and the progress in enrichment of precious metals from the nickel-copper-iron matte containing precious metals at home and abroad, this paper put forward the process route of enrichment of precious metals and selectively leaching of base metals from the nickel-copper-iron matte by sulfuric acid and sodium hypochlorite. The effects of particle size, leaching temperature, leaching time, amount of sulfuric acid and sodium hypochlorite on the leaching rate of nickel, cobalt, copper and iron are mainly discussed. The results show that raw material particle size has significantly effects on the leaching rate of base metals, high leaching rate of base metals and enrichment of precious metals are obtained with the suitable particle size. Through the experiments, the reasonable experiment parameters and conditions were determined as fellows: particle size of-200 to +250 mesh, leaching temperature 95℃ , leaching time 5 h, sulfuric acid concentration 30%, adding amount of sodium hypochlorite 3 times of matte weight. Under these experiment parameters and conditions, the leaching rate of nickel, cobalt, copper and iron were 97.39%, 96.24%, 98.30% and 99.01%, respectively. The content of nickel, cobalt, copper, iron in the leaching residues was 8.15%, 0.23%, 1.40% and 0.24%, respectively. The content of Pt, Pd, Au, Ag and Rh in the leaching residues was 247 g/t, 521 g/t, 112 g/t, 494 g/t and 24 g/t, respectively. The content of Pt, Pd, Au, Ag and Rh in the leaching solution was <0.0005 g/L, 0.0023 g/L, 0.0007 g/L, <0.0005 g/L and 0.00017 g/L, respectively. This process has advantages as follows: a small investment, simple technology, high enrichment efficiency.
基金National Natural Science Foundation of China (grant nos.51268001,21303141) for support of this work
文摘A series of biopolymer based complex were manufactured by coordinating iron ions to the abundant amino-and sulfur-containing groups in the modified wool and used as heterogeneous Fenton-like photocatalyst for 4-chlorophenol (4-CP) degradation in the presence of H2O2. Hydroxylamine hydrochloride (NH2OH center dot HCl) or acrylic acid was employed to modify the natural wool to strengthen the interaction with iron and to reinforce the structural stability. The NH2OH center dot HCl modified wool based complex showed the best catalytic performance for 4-CP degradation. The strong coordination between iron and great number of hydroxamic acid in this modified complex leads to the least iron leaching during the tests. HO center dot species was confirmed to be the dominant reactive oxidant in the decontamination process. The approach presented in this study can provide a new approach for developing novel bioployermer-based photocatalysts for efficient degradation of toxic organic pollutants such as 4-CP. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
文摘The layer structure of low-carbon steel containing RE by high-temperature (T>1200 ℃) carburizing of liquid cast-iron was studied and the diffusion activation energy of carbon was calculated by metallographic microscpe, chemical analysis etc. The result shows that the technology of carburizing in liquid cast-iron can expedite caburization distinctly and changes the carburizing layer structure. The carburizing rate is 60~80 times of that of the traditional technology, and there is about 43% decrease in the activation energy compared with gas-carburization. In outer structure layer, cementite is formed simultaneously both on the crystal boundary reticularly and inside the crystal grains stripedly. In inner carburizing layer, there is undissolved blocky ferrite in reticular cementite. Besides, rare earth element can expedite carburization process.
文摘Carbonyl-iron/Fe91Si9 composites for thin microwave absorbers were firstly prepared by a simple blending technique. The patterns of carbonyl-iron and Fe91Si9 were characterized by scanning electron microscope (SEM). The complex permittivity, permeability and microwave absorption properties of the composites were studied in the frequency range of 2 - 7GHz by a HP8720B vector network analyzer. Complex permittivity and permeability decrease gradually with increasing weight percentage of Fe91Si9 in the composites, the variation of permittivity was very large but the variation of permeability was very small. The composites exhibited excellent microwave absorption properties with increasing Fe91Si9 content. The reflection loss (RL) values less than –20 dB were obtained in the 3.7 - 6.7 GHz frequency range for the paraffin matrix composites with 80 wt% carbonyl-iron/Fe91Si9 powders (weight ratio of carbonyl-iron to Fe91Si9 was 1:1), with thickness of 4.0 - 2.4 mm, respectively. The optimal RL of –45 dB was observed at 5.2 GHz with a matching thickness (dm) of 3.0 mm. The excellent microwave absorption properties were attributed to a better electromagnetic impedance match and a higher electric resistivity.
文摘The composition,structure and micro-morphology of magnesium- iron- aluminum composite oxides were investigated using various methods such as XRF,SEM,EDS,XRD and KMn O4-titration. Compared to hercynite,the composite oxides have completely different phases including solid solution( Mg O)0. 77( Fe O)0. 23,composite spinel Mg Fe0. 2Al1. 8O4 and a small amount of Mg Fe2O4. The composite oxides exhibit excellent corrosion resistance to cement clinker and potassium salts.The products produced by magnesite and the composite oxides show better performance than magnesia- hercynite bricks,especially the corrosion resistance and thermal shock resistance.
文摘X-ray diffraction was utilized to measure the residual stress of 45 mm UNS N08810 plates after post-weld heat treatment at temperatures of 680℃ and 900℃, which showed reductions of 86.9% and 71.6% in the residual stress, respectively. This indicates that post-weld heat treatment can play a significant role in reducing residual stress, while no significant effects on tensile stress and micro-hardness of the welding joint were observed after treatment.
文摘With accurate battery modeling, circuit designers and automotive control algorithms developers can predict and optimize the battery performance. In this paper, an experimental verification of an accurate model for prismatic high current lithium-iron-phosphate battery is presented. An automotive TSLFP160AHA lithium-iron-phosphate battery bank is tested. The different capacity GBDLFMP60AH battery bank is used to validate the model extracted from the former battery. Effect of current, stacking and SOC upon the battery parameters performance is investigated. Six empirical equations are obtained to extract the prismatic type LiFePO4 model as a function of SOC. Based on comparing the measured and simulated data, a well accuracy of less than 50mV maximum error voltage with 1.7% operating time error referred to the measured data is achieved. The model can be easily modified to simulate different batteries and can be extended for wide ranges of different currents.
文摘The main objective of this study was to investigate copper-Nickle-Iron bearing rocks of the northern Kenya, and understand their mode of formation. The area of study is bounded by latitudes 2º52'00"N and 1º52'00"N and longitudes 37º19'00"E and 37º36'00"E, South West of Marsabit town. The methods involved geological field mapping between September, 2020 and December 2020. Elemental analyses of the samples were done using an XRF. Pearsonian correlation on the analyzed elements was done using Oasis Montaj 8.4. Fabric8 software was used to analyze structural data. The area comprises metamorphic, igneous and sedimentary rocks. Metamorphic rocks include biotite hornblende gneisses, biotite gneisses, biotite muscovite gneisses and marbles. Basalts of different mineralogy were also found in the area. Colluvium and alluvium sediments were found covering some of the metamorphic rocks in some areas. Malachite occurs in gneisses in the central part of the area. The area has undergone deformation, which includes jointing and folding. The fold axis trend in the North-South direction and plunges to the southern part of the area. Correlation of the elements shows that there is a positive correlation of Copper-Nickel-Iron. This indicates similar mode of delivery within the host rocks. Kriging indicates spatial distribution of these elements within the study area. The average size of distribution can easily be computed from the maps produced by kriging.
基金Supported by the National Natural Science Foundation of China(21607080)the Natural Science Foundation of Jiangsu Province(BK20160946)Jiangsu Higher Education Institution NSF(16KJB610011)
文摘Polymer-supported hydrous iron oxides(HFOs) are promising for heavy metals removal from aqueous systems.The ubiquitous inorganic ligands, e.g., sulfate, are expected to exert considerable impacts on pollutants removal by these hybrid sorbents. Herein, we obtained a hybrid sorbent HFO-PS by encapsulating nanosized HFO into macroporous polystyrene(PS) resin. Both batch and column sorption experiments of Cu(Ⅱ) by HFO-PS were carried out in the presence of sulfate. Obviously, the presence of sulfate is favorable for Cu(Ⅱ) sorption onto HFO-PS.The performances of column Cu(Ⅱ) removal were fitted and predicted with Adams–Bohart, Clark, Thomas and BDST models. Thomas model is suggested best-fit to predict the breakthrough curves. Besides, a linear correlation is observed between breakthrough time and column length based on BDST model, which might be useful for predicting the breakthrough time for Cu(Ⅱ) removal by HFO-PS.
文摘Also known as a prebiotic, fructooligosaccharide (FOS) resists digestion by gastric acid and pancreatic enzymes in vivo, but is preferentially fermented by beneficial intestinal bacteria once it reaches the colon. While some studies suggest that FOS and its fermentation products may influence the iron absorption process, the effects of prolonged FOS supplementation on iron status remain unclear. The objective of this study was therefore to determine the enhancing effects of FOS supplementation on the iron status of anemic rats. Male Sprague-Dawley rats receiving a low-iron diet (12 μg/g) for 14 days showed significantly lower hemoglobin concentration, as well as lower tissue non-heme iron levels than rats receiving a regular diet (45 μg/g), confirming iron-deficiency anemia. On the first day of the feeding trial, two groups of anemic rats (n = 6) were fed the same low-iron diet with or without FOS supplementation, while two other groups of anemic rats were switched to the regular diet with or without FOS supplementation to allow recovery. FOS was provided to the rats by dissolving in water at 5% (w/v). Anemic rats fed the low-iron diet showed a mild increase (p < 0.05) in hemoglobin level after 21 days of FOS supplementation when compared to rats without FOS. For anemic rats switched to the regular diet, hemoglobin level returned to normal after 14 days and FOS supplementation showed no additional effects. Our results suggest that FOS supplementation has a mild enhancing effect on the iron status of anemic subjects on a low-iron diet.