针对传统序列模式挖掘(SPM)不考虑模式重复性且忽略各项的效用(单价或利润)与模式长度对用户兴趣度影响的问题,提出一次性条件下top-k高平均效用序列模式挖掘(TOUP)算法。TOUP算法主要包括两个核心步骤:平均效用计算和候选模式生成。首...针对传统序列模式挖掘(SPM)不考虑模式重复性且忽略各项的效用(单价或利润)与模式长度对用户兴趣度影响的问题,提出一次性条件下top-k高平均效用序列模式挖掘(TOUP)算法。TOUP算法主要包括两个核心步骤:平均效用计算和候选模式生成。首先,提出基于各项出现位置与项重复关系数组的CSP(Calculation Support of Pattern)算法计算模式支持度,从而实现模式平均效用的快速计算;其次,采用项集扩展和序列扩展生成候选模式,并提出了最大平均效用上界,基于该上界实现对候选模式的有效剪枝。在5个真实数据集和1个合成数据集上的实验结果表明,相较于TOUP-dfs和HAOP-ms算法,TOUP算法的候选模式数分别降低了38.5%~99.8%和0.9%~77.6%;运行时间分别降低了33.6%~97.1%和57.9%~97.2%。TOUP的算法性能更优,能更高效地挖掘用户感兴趣的模式。展开更多
Let k be a positive integer and G a bipartite graph with bipartition (X,Y). A perfect 1-k matching is an edge subset M of G such that each vertex in Y is incident with exactly one edge in M and each vertex in X is inc...Let k be a positive integer and G a bipartite graph with bipartition (X,Y). A perfect 1-k matching is an edge subset M of G such that each vertex in Y is incident with exactly one edge in M and each vertex in X is incident with exactly k edges in M. A perfect 1-k matching is an optimal semi-matching related to the load-balancing problem, where a semi-matching is an edge subset M such that each vertex in Y is incident with exactly one edge in M, and a vertex in X can be incident with an arbitrary number of edges in M. In this paper, we give three sufficient and necessary conditions for the existence of perfect 1-k matchings and for the existence of 1-k matchings covering | X |−dvertices in X, respectively, and characterize k-elementary bipartite graph which is a graph such that the subgraph induced by all k-allowed edges is connected, where an edge is k-allowed if it is contained in a perfect 1-k matching.展开更多
文摘针对传统序列模式挖掘(SPM)不考虑模式重复性且忽略各项的效用(单价或利润)与模式长度对用户兴趣度影响的问题,提出一次性条件下top-k高平均效用序列模式挖掘(TOUP)算法。TOUP算法主要包括两个核心步骤:平均效用计算和候选模式生成。首先,提出基于各项出现位置与项重复关系数组的CSP(Calculation Support of Pattern)算法计算模式支持度,从而实现模式平均效用的快速计算;其次,采用项集扩展和序列扩展生成候选模式,并提出了最大平均效用上界,基于该上界实现对候选模式的有效剪枝。在5个真实数据集和1个合成数据集上的实验结果表明,相较于TOUP-dfs和HAOP-ms算法,TOUP算法的候选模式数分别降低了38.5%~99.8%和0.9%~77.6%;运行时间分别降低了33.6%~97.1%和57.9%~97.2%。TOUP的算法性能更优,能更高效地挖掘用户感兴趣的模式。
文摘Let k be a positive integer and G a bipartite graph with bipartition (X,Y). A perfect 1-k matching is an edge subset M of G such that each vertex in Y is incident with exactly one edge in M and each vertex in X is incident with exactly k edges in M. A perfect 1-k matching is an optimal semi-matching related to the load-balancing problem, where a semi-matching is an edge subset M such that each vertex in Y is incident with exactly one edge in M, and a vertex in X can be incident with an arbitrary number of edges in M. In this paper, we give three sufficient and necessary conditions for the existence of perfect 1-k matchings and for the existence of 1-k matchings covering | X |−dvertices in X, respectively, and characterize k-elementary bipartite graph which is a graph such that the subgraph induced by all k-allowed edges is connected, where an edge is k-allowed if it is contained in a perfect 1-k matching.