This paper investigates a simplified model for describing the gravitational fields of non- axisymmetric elongated asteroids. The connection between the simplified model and the target aster-oid is built by considering...This paper investigates a simplified model for describing the gravitational fields of non- axisymmetric elongated asteroids. The connection between the simplified model and the target aster-oid is built by considering the positions of equilibrium points. To improve the performance of po-sition matching for the equilibrium points associated with these non-axisymmetric asteroids, a non-axisymmetric triple-particle-linkage model is proposed based on two existing axisymmetric particle- linkage models. The unknown parameters of the simplified model are determined by minimizing the matching error using the nonlinear optimization method. The proposed simplified model is applied for three realistic elongated asteroids, 243 Ida, 433 Eros and (8567) 1996 HW1. The simulation re-sults verify that the current particle-linkage model has better matching accuracy than the two existing particle-linkage models. The comparison, between the simplified model and the polyhedral model, on the topological cases of the equilibrium points and the distribution of gravitational potential further validate the rationality and accuracy of the simplified model.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.11672126)the Innovation Funded Project of Shanghai Aerospace Science and Technology (Grant Nos.SAST2017032 and SAST2015036)the Scientific Research Foundation for New Staffs of Nanjing University of Aeronautics and Astronautics (Grant No.1011-YAH17071)
文摘This paper investigates a simplified model for describing the gravitational fields of non- axisymmetric elongated asteroids. The connection between the simplified model and the target aster-oid is built by considering the positions of equilibrium points. To improve the performance of po-sition matching for the equilibrium points associated with these non-axisymmetric asteroids, a non-axisymmetric triple-particle-linkage model is proposed based on two existing axisymmetric particle- linkage models. The unknown parameters of the simplified model are determined by minimizing the matching error using the nonlinear optimization method. The proposed simplified model is applied for three realistic elongated asteroids, 243 Ida, 433 Eros and (8567) 1996 HW1. The simulation re-sults verify that the current particle-linkage model has better matching accuracy than the two existing particle-linkage models. The comparison, between the simplified model and the polyhedral model, on the topological cases of the equilibrium points and the distribution of gravitational potential further validate the rationality and accuracy of the simplified model.