Color fading caused by a decrease in anthocyanin accumulation during the post-flowering stage significantly affects postharvest quality of chrysanthemum.However,the underlying mechanism by which anthocyanin accumulati...Color fading caused by a decrease in anthocyanin accumulation during the post-flowering stage significantly affects postharvest quality of chrysanthemum.However,the underlying mechanism by which anthocyanin accumulation decreases during the post-flowering stage still unclear,which greatly restricts design of molecular breeding in chrysanthemum.Here,a chrysanthemum SG7 R2R3 MYB transcription factor(TF),CmMYB3-like,was identified to have a function in regulating anthocyanin biosynthesis during the post-flowering stage.Quantitative real time PCR(qRT-PCR)assays showed that the expression of CmMYB3-like was gradually downregulated when anthocyanin content increased during the flowering stage and was significantly upregulated during the post-flowering stage.Genetic transformation of chrysanthemum and dual-luciferase assays in N.benthamiana leaves showed that CmMYB3-like suppressed anthocyanin accumulation by inhibiting the transcription of CmCHS and CmANS directly and that of CmF3H indirectly.However,overexpression or suppression of CmMYB3-like did not affect the biosynthesis of flavones or flavonols.Genetic transformation of chrysanthemum revealed that the overexpression of CmMYB3-like inhibited anthocyanin accumulation,but its suppression prevented the decrease in anthocyanin accumulation during the post-flowering stage.Our results revealed a crucial role of CmMYB3-like in regulating the color of petals during the post-flowering stage and provided a target gene for molecular design breeding to improve the postharvest quality of chrysanthemum.展开更多
Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regu...Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regulate plant response and defense to drought stress.Here we show that the BEL1-like transcription factor GhBLH5-A05 functions in cotton(Gossypium hirsutum)response and defense to drought stress.Expression of GhBLH5-A05 in cotton was induced by drought stress.Overexpression of GhBLH5-A05 in both Arabidopsis and cotton increased drought tolerance,whereas silencing GhBLH5-A05 in cotton resulted in elevated sensitivity to drought stress.GhBLH5-A05 binds to cis elements in the promoters of GhRD20-A09 and GhDREB2C-D05 to activate the expression of these genes.GhBLH5-A05 interacted with the KNOX transcription factor GhKNAT6-A03.Co-expression of GhBLH5-A05 and GhKNAT6-A03 increased the transcription of GhRD20-A09 and GhDREB2C-D05.We conclude that GhBLH5-A05 acts as a regulatory factor with GhKNAT6-A03 functioning in cotton response to drought stress by activating the expression of the drought-responsive genes GhRD20-A09 and GhDREB2C-D05.展开更多
The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becomi...The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease.展开更多
Changes in lipid metabolism have been implicated in protection against infectious diseases. In the first experiment of this study, we measured clinical lipid parameters in a murine model where the unmethylated cytidin...Changes in lipid metabolism have been implicated in protection against infectious diseases. In the first experiment of this study, we measured clinical lipid parameters in a murine model where the unmethylated cytidine phosphate guanosine (CpG) oligodinucleotide (ODN1826), a Toll-like receptor 9 (TLR9) agonist was administered in combination with D-galactosamine (GalN) that caused relatively liver-specific inflammation and toxicity. In the control mice group injected with phosphate-buffered saline (PBS) (acute psychological stress model associated with blood sampling), the serum triglyceride (TG) levels showed a rapid decrease followed by a rebound at 24 h as we have recently reported. However, such a TG rebound was impaired in the CpG/GalN- and solely CpG-treated groups of mice despite an absence of liver injury based on serum alanine aminotransferase levels in the latter group. Thus, the stress-associated serum TG rebound was abrogated by the injection of a sub-hepatotoxic CpG dose. In the second experiment, we simply measured the hepatic CD36 and SACRB1 (the gene for scavenger receptor B1 (SR-B1)) transcripts after the i.p. administration of PBS, CpG or CpG/GalN. There was a remarkable elevation of hepatic CD36 transcript expression in both the CpG- and CpG/GalN-treated mice at 8 h post-CpG injection whereas the increase in the PBS-treated mice was slower than the former two groups, suggesting that hepatic CD36 transcript expression is more pronounced in the combined stress models than under psychological stress alone. The individual mice data showed that the increase in CD36 expression was accompanied by a reduction in SCARB1 mRNA, showing reciprocal regulation between these two genes. Together with our previously reported findings, these data suggest that, in a murine model combining psychological stress with TLR-triggered hepatic inflammation, the psychological stress facilitates liver uptake of plasma TG (and its components fatty acids), but the subsequent re-esterification and/or release of TG-rich lipoproteins from the liver is impaired due to the concomitant TLR-signaling. We hypothesize that lipid metabolism during acute stress shifts toward an elevated hepatic uptake of lipids due to concomitant TLR signaling, facilitating the clearance of bacterial lipids by the liver.展开更多
Background: The objective of this study was to compare and analyze the variations in clinical indices before and after treatment of type 2 mellitus (T2DM) combined with nonalcoholic fatty liver disease (NAFLD) that we...Background: The objective of this study was to compare and analyze the variations in clinical indices before and after treatment of type 2 mellitus (T2DM) combined with nonalcoholic fatty liver disease (NAFLD) that were treated with glucagon-like peptide 1 receptor agonists (GLP-1RAs). Methods: The electronic medical record system was utilized to search for a total of 16 patients with type 2 diabetes complicated by NAFLD who were hospitalized at the First Affiliated Hospital of Yangtze University from October 2022 to April 2023 and treated with GLP-1RA for the first time. The clinical indices were compared before and after 12 weeks of treatment with GLP-1RA. Results: The liver-spleen CT ratio (L/S), alanine aminotransferase (ALT), gamma-glutamyltransferase (GGT), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) in all patients treated with GLP-1RA after 12 weeks were significantly different (P 0.05). The patients were categorized into two groups based on the types of GLP-1RAs. The changes in L/S, TC, TG, and LDL-C in the long-acting group after treatment were statistically significant (P Conclusions: GLP-1RAs can improve liver function, regulate lipid metabolism, and reduce the severity of fatty liver in patients with T2DM complicated by NAFLD, which demonstrates the importance of clinical applications.展开更多
基金financially supported grants from National Natural Science Foundation of China(Grant Nos.31902053,31870279,31730081)China Postdoctoral Science Foundation(Grant No.2018M642273)+3 种基金Jiangsu Planned Projects or Postdoctoral Reaearch Funds(Grant No.2019K169)the Fundamental Research Funds for the Central Uniersities(Grant No.KYQN202031)the National Key Research and Development Program of China(Grant Nos.2019YFD1001500,2020YFD1000400)the earmarked fund for Jiangsu Agricultural Industry Technology System,and a project funded by the Priority academic Program Development of Jiangsu Higher Education Institutions。
文摘Color fading caused by a decrease in anthocyanin accumulation during the post-flowering stage significantly affects postharvest quality of chrysanthemum.However,the underlying mechanism by which anthocyanin accumulation decreases during the post-flowering stage still unclear,which greatly restricts design of molecular breeding in chrysanthemum.Here,a chrysanthemum SG7 R2R3 MYB transcription factor(TF),CmMYB3-like,was identified to have a function in regulating anthocyanin biosynthesis during the post-flowering stage.Quantitative real time PCR(qRT-PCR)assays showed that the expression of CmMYB3-like was gradually downregulated when anthocyanin content increased during the flowering stage and was significantly upregulated during the post-flowering stage.Genetic transformation of chrysanthemum and dual-luciferase assays in N.benthamiana leaves showed that CmMYB3-like suppressed anthocyanin accumulation by inhibiting the transcription of CmCHS and CmANS directly and that of CmF3H indirectly.However,overexpression or suppression of CmMYB3-like did not affect the biosynthesis of flavones or flavonols.Genetic transformation of chrysanthemum revealed that the overexpression of CmMYB3-like inhibited anthocyanin accumulation,but its suppression prevented the decrease in anthocyanin accumulation during the post-flowering stage.Our results revealed a crucial role of CmMYB3-like in regulating the color of petals during the post-flowering stage and provided a target gene for molecular design breeding to improve the postharvest quality of chrysanthemum.
基金supported by the Project from the Ministry of Agriculture of China for Transgenic Research(2014ZX0800927B)the National Natural Science Foundation of China(31871667).
文摘Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regulate plant response and defense to drought stress.Here we show that the BEL1-like transcription factor GhBLH5-A05 functions in cotton(Gossypium hirsutum)response and defense to drought stress.Expression of GhBLH5-A05 in cotton was induced by drought stress.Overexpression of GhBLH5-A05 in both Arabidopsis and cotton increased drought tolerance,whereas silencing GhBLH5-A05 in cotton resulted in elevated sensitivity to drought stress.GhBLH5-A05 binds to cis elements in the promoters of GhRD20-A09 and GhDREB2C-D05 to activate the expression of these genes.GhBLH5-A05 interacted with the KNOX transcription factor GhKNAT6-A03.Co-expression of GhBLH5-A05 and GhKNAT6-A03 increased the transcription of GhRD20-A09 and GhDREB2C-D05.We conclude that GhBLH5-A05 acts as a regulatory factor with GhKNAT6-A03 functioning in cotton response to drought stress by activating the expression of the drought-responsive genes GhRD20-A09 and GhDREB2C-D05.
文摘The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease.
文摘Changes in lipid metabolism have been implicated in protection against infectious diseases. In the first experiment of this study, we measured clinical lipid parameters in a murine model where the unmethylated cytidine phosphate guanosine (CpG) oligodinucleotide (ODN1826), a Toll-like receptor 9 (TLR9) agonist was administered in combination with D-galactosamine (GalN) that caused relatively liver-specific inflammation and toxicity. In the control mice group injected with phosphate-buffered saline (PBS) (acute psychological stress model associated with blood sampling), the serum triglyceride (TG) levels showed a rapid decrease followed by a rebound at 24 h as we have recently reported. However, such a TG rebound was impaired in the CpG/GalN- and solely CpG-treated groups of mice despite an absence of liver injury based on serum alanine aminotransferase levels in the latter group. Thus, the stress-associated serum TG rebound was abrogated by the injection of a sub-hepatotoxic CpG dose. In the second experiment, we simply measured the hepatic CD36 and SACRB1 (the gene for scavenger receptor B1 (SR-B1)) transcripts after the i.p. administration of PBS, CpG or CpG/GalN. There was a remarkable elevation of hepatic CD36 transcript expression in both the CpG- and CpG/GalN-treated mice at 8 h post-CpG injection whereas the increase in the PBS-treated mice was slower than the former two groups, suggesting that hepatic CD36 transcript expression is more pronounced in the combined stress models than under psychological stress alone. The individual mice data showed that the increase in CD36 expression was accompanied by a reduction in SCARB1 mRNA, showing reciprocal regulation between these two genes. Together with our previously reported findings, these data suggest that, in a murine model combining psychological stress with TLR-triggered hepatic inflammation, the psychological stress facilitates liver uptake of plasma TG (and its components fatty acids), but the subsequent re-esterification and/or release of TG-rich lipoproteins from the liver is impaired due to the concomitant TLR-signaling. We hypothesize that lipid metabolism during acute stress shifts toward an elevated hepatic uptake of lipids due to concomitant TLR signaling, facilitating the clearance of bacterial lipids by the liver.
文摘Background: The objective of this study was to compare and analyze the variations in clinical indices before and after treatment of type 2 mellitus (T2DM) combined with nonalcoholic fatty liver disease (NAFLD) that were treated with glucagon-like peptide 1 receptor agonists (GLP-1RAs). Methods: The electronic medical record system was utilized to search for a total of 16 patients with type 2 diabetes complicated by NAFLD who were hospitalized at the First Affiliated Hospital of Yangtze University from October 2022 to April 2023 and treated with GLP-1RA for the first time. The clinical indices were compared before and after 12 weeks of treatment with GLP-1RA. Results: The liver-spleen CT ratio (L/S), alanine aminotransferase (ALT), gamma-glutamyltransferase (GGT), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) in all patients treated with GLP-1RA after 12 weeks were significantly different (P 0.05). The patients were categorized into two groups based on the types of GLP-1RAs. The changes in L/S, TC, TG, and LDL-C in the long-acting group after treatment were statistically significant (P Conclusions: GLP-1RAs can improve liver function, regulate lipid metabolism, and reduce the severity of fatty liver in patients with T2DM complicated by NAFLD, which demonstrates the importance of clinical applications.