This paper presented a new Floquet analysis used to calculate the radiation for 1-D and 2-D coupled periodic antenna systems. In this way, an accurate evaluation of mutual coupling can be proven by using a new mutual ...This paper presented a new Floquet analysis used to calculate the radiation for 1-D and 2-D coupled periodic antenna systems. In this way, an accurate evaluation of mutual coupling can be proven by using a new mutual interaction expression that was based on Fourier analysis. Then, this work indicated how Floquet analysis can be used to study a finite array with uniform amplitude and linear phase distribution in both x and y directions. To modelize the proposed structures, two formulations were given in a spectral and spatial domain, where the Moment (MoM) method combined with a generalized equivalent circuit (GEC) method was applied. Radiation pattern of coupled periodic antenna was shown by varying many parameters, such as frequencies, distance and Floquet states. The 3-D radiation beam of the coupled antenna array was analyzed and compared in several steering angles θs and coupling values dx. The simulation of this structure demonstrated that directivity decreased at higher coupling values. The secondary lobs in the antenna radiation pattern affected the main lobe gain by energy dispersal and considerable increasing of side lobe level (SLL) may be achieved. Therefore, the sweeping of the radiation beam in several steering directions affected the electromagnetic performance of the antenna system: the directivity at the steering angle θs = π⁄3 was more damaged and had 19.99 dB while the second at θs = 0 had about 35.11 dB. This parametric study of coupled structure used to concept smart periodic antenna with sweeping radiation beam.展开更多
In theory, Log-Periodic Antenna (LPA) is a linearly polarized antenna with frequency independent properties on the input impedance and gain patterns. Owing to these characteristics, LPA has gained research interests a...In theory, Log-Periodic Antenna (LPA) is a linearly polarized antenna with frequency independent properties on the input impedance and gain patterns. Owing to these characteristics, LPA has gained research interests and been employed for many wideband applications. A Printed Log-Periodic Dipole Antenna (PLPDA) with multiple notched bands is proposed for Ultra-WideBand (UWB) applications. An antenna with the notched frequencies of 1.03 GHz, 1.28 GHz, 1.72 GHz, 2.24 GHz and 2.51 GHz is designed, fabricated, and measured. An antenna model was established on the substrate of FR4 and feed by a stripline. The simulation results show that the antenna can achieve an impendence wide bandwidth from 0.89 to 2.58 GHz with return loss less than -10 dB and exhibit stable antenna gain. Furthermore, the measurement result is better consistent with simulation result.展开更多
A rectangle capacity patch was adopted as the resonance unit of the Log Periodic Dipole Antenna (LPDA) so as to realize the miniaturization of this aerial in this paper. Fifteen rectangle capacity patch units of diffe...A rectangle capacity patch was adopted as the resonance unit of the Log Periodic Dipole Antenna (LPDA) so as to realize the miniaturization of this aerial in this paper. Fifteen rectangle capacity patch units of different parameters were analyzed in this paper and three design laws of size-reduction were found. Accord-ing to these design laws, a 70% miniaturization ratio LPDA was designed and fabricated. The Voltage Standing Wave Ratio (VSWR) and pattern of the fabricated LPDA were measured. The results indicate that this size-reduction method do not deteriorate performance.展开更多
A novel planar leaky-wave antenna of conductor modulating periodic structure formillimeter wave application is proposed.Using the theory of two-dimensional periodic admittancesurface,theoretical analysis,numerical cal...A novel planar leaky-wave antenna of conductor modulating periodic structure formillimeter wave application is proposed.Using the theory of two-dimensional periodic admittancesurface,theoretical analysis,numerical calculation and experimental study are carried out for thiskind of antenna.A planar antenna of conductor modulating periodic structure is realized in 8mmwave band.It has an aperture area of 90×90mm^2.The measured performances of the antennaare good.展开更多
This paper presents the family of logarithmically periodic toothed planer antennas. In this the dimensions of the succes-sive sections were increased in geometric progression for a wide bandwidth usage. A band width o...This paper presents the family of logarithmically periodic toothed planer antennas. In this the dimensions of the succes-sive sections were increased in geometric progression for a wide bandwidth usage. A band width of 7% for trapezoid toothed, 26% for zigzag toothed and 50% for cross-toothed VSWR < 2 has been obtained from the proposed antennas. Investigations on the gain and radiation characteristics have been carried out. The investigations show that the pro-posed designs not only offers the enhanced bandwidth but also possesses the same characteristics over the desired fre-quency band at same probe feed position.展开更多
This paper proposes a printed log-periodic dipole antenna (LPDA) for ultra wide bandwidth (UWB) applications. The antenna comprises of cascading four U shaped elements of different line lengths with balun circuit to i...This paper proposes a printed log-periodic dipole antenna (LPDA) for ultra wide bandwidth (UWB) applications. The antenna comprises of cascading four U shaped elements of different line lengths with balun circuit to improve the antenna impedance matching. The proposed antenna dimensions are 50 × 50 mm2 with FR4 substrate thickness 0.8 mm. Full-wave EM solver HFSS (High Frequency Structure Simulator) is used for modeling the proposed antenna. The pulse distortion is verified by the measured the proposed antenna performance with virtually steady group delay. The simulation and experimental results show that the proposed antenna exhibits good impedance matching, stable radiation patterns throughout the whole operating frequency bands, acceptable gain and stable group delay over the entire operating band. An UWB extended from 1.85 GHz to 11 GHz is obtained, and the average antenna gain is about 5.5 dBi over the operating band with peak gain around 6.5 dBi and 70% average radiation efficiency.展开更多
In this paper Genetic Algorithm has been integrated with Fouquet modal analysis to optimize radiation pattern of coupled periodic antenna. Floquet analysis is used with MoM-GEC (Moment-Generalized Equivalent Circuit) ...In this paper Genetic Algorithm has been integrated with Fouquet modal analysis to optimize radiation pattern of coupled periodic antenna. Floquet analysis is used with MoM-GEC (Moment-Generalized Equivalent Circuit) method to study a finite periodic array with uniform amplitude and linear phase distribution. This method is very advantageous for studying large antenna array since it considerably reduces the computation time and the number of operations. In this way, Genetic algorithm is introduced and combined with Floquet analysis to optimize the radiation pattern distribution of this coupled periodic antenna. The goal of the optimization is to provide a better radiation characteristic for the coupled periodic antenna with maximum side lobe level reduction.展开更多
The methods of moment and genetic algorithm (GA) are combined to optimize the Yagi Uda antenna array and Log periodic dipole antenna (LPDA) array. The element lengths and spacing are optimized for the Yagi Uda arra...The methods of moment and genetic algorithm (GA) are combined to optimize the Yagi Uda antenna array and Log periodic dipole antenna (LPDA) array. The element lengths and spacing are optimized for the Yagi Uda array; while the ratio factor of spacing to length as well as the ratio of length to diameter of the elements are optimized for LPDA array. The results show that the main parameters, such as gain and pattern, have been improved apparently; and the high back lobe level of LPDA can be reduced greatly, therefore, GA is a very competent method for optimizing the linear array as well as in other fields.展开更多
A Cassegrainian antenna with frequency selective reflector is introduced, and the measured radiation properties and radar cross-section (RCS) of the antenna are given and discussed. In comparison with ordinary metalli...A Cassegrainian antenna with frequency selective reflector is introduced, and the measured radiation properties and radar cross-section (RCS) of the antenna are given and discussed. In comparison with ordinary metallic reflector, this antenna can obtain similar radiation pattern and about 15dB of RCS reduction.展开更多
文摘This paper presented a new Floquet analysis used to calculate the radiation for 1-D and 2-D coupled periodic antenna systems. In this way, an accurate evaluation of mutual coupling can be proven by using a new mutual interaction expression that was based on Fourier analysis. Then, this work indicated how Floquet analysis can be used to study a finite array with uniform amplitude and linear phase distribution in both x and y directions. To modelize the proposed structures, two formulations were given in a spectral and spatial domain, where the Moment (MoM) method combined with a generalized equivalent circuit (GEC) method was applied. Radiation pattern of coupled periodic antenna was shown by varying many parameters, such as frequencies, distance and Floquet states. The 3-D radiation beam of the coupled antenna array was analyzed and compared in several steering angles θs and coupling values dx. The simulation of this structure demonstrated that directivity decreased at higher coupling values. The secondary lobs in the antenna radiation pattern affected the main lobe gain by energy dispersal and considerable increasing of side lobe level (SLL) may be achieved. Therefore, the sweeping of the radiation beam in several steering directions affected the electromagnetic performance of the antenna system: the directivity at the steering angle θs = π⁄3 was more damaged and had 19.99 dB while the second at θs = 0 had about 35.11 dB. This parametric study of coupled structure used to concept smart periodic antenna with sweeping radiation beam.
文摘In theory, Log-Periodic Antenna (LPA) is a linearly polarized antenna with frequency independent properties on the input impedance and gain patterns. Owing to these characteristics, LPA has gained research interests and been employed for many wideband applications. A Printed Log-Periodic Dipole Antenna (PLPDA) with multiple notched bands is proposed for Ultra-WideBand (UWB) applications. An antenna with the notched frequencies of 1.03 GHz, 1.28 GHz, 1.72 GHz, 2.24 GHz and 2.51 GHz is designed, fabricated, and measured. An antenna model was established on the substrate of FR4 and feed by a stripline. The simulation results show that the antenna can achieve an impendence wide bandwidth from 0.89 to 2.58 GHz with return loss less than -10 dB and exhibit stable antenna gain. Furthermore, the measurement result is better consistent with simulation result.
文摘A rectangle capacity patch was adopted as the resonance unit of the Log Periodic Dipole Antenna (LPDA) so as to realize the miniaturization of this aerial in this paper. Fifteen rectangle capacity patch units of different parameters were analyzed in this paper and three design laws of size-reduction were found. Accord-ing to these design laws, a 70% miniaturization ratio LPDA was designed and fabricated. The Voltage Standing Wave Ratio (VSWR) and pattern of the fabricated LPDA were measured. The results indicate that this size-reduction method do not deteriorate performance.
文摘A novel planar leaky-wave antenna of conductor modulating periodic structure formillimeter wave application is proposed.Using the theory of two-dimensional periodic admittancesurface,theoretical analysis,numerical calculation and experimental study are carried out for thiskind of antenna.A planar antenna of conductor modulating periodic structure is realized in 8mmwave band.It has an aperture area of 90×90mm^2.The measured performances of the antennaare good.
文摘This paper presents the family of logarithmically periodic toothed planer antennas. In this the dimensions of the succes-sive sections were increased in geometric progression for a wide bandwidth usage. A band width of 7% for trapezoid toothed, 26% for zigzag toothed and 50% for cross-toothed VSWR < 2 has been obtained from the proposed antennas. Investigations on the gain and radiation characteristics have been carried out. The investigations show that the pro-posed designs not only offers the enhanced bandwidth but also possesses the same characteristics over the desired fre-quency band at same probe feed position.
文摘This paper proposes a printed log-periodic dipole antenna (LPDA) for ultra wide bandwidth (UWB) applications. The antenna comprises of cascading four U shaped elements of different line lengths with balun circuit to improve the antenna impedance matching. The proposed antenna dimensions are 50 × 50 mm2 with FR4 substrate thickness 0.8 mm. Full-wave EM solver HFSS (High Frequency Structure Simulator) is used for modeling the proposed antenna. The pulse distortion is verified by the measured the proposed antenna performance with virtually steady group delay. The simulation and experimental results show that the proposed antenna exhibits good impedance matching, stable radiation patterns throughout the whole operating frequency bands, acceptable gain and stable group delay over the entire operating band. An UWB extended from 1.85 GHz to 11 GHz is obtained, and the average antenna gain is about 5.5 dBi over the operating band with peak gain around 6.5 dBi and 70% average radiation efficiency.
文摘In this paper Genetic Algorithm has been integrated with Fouquet modal analysis to optimize radiation pattern of coupled periodic antenna. Floquet analysis is used with MoM-GEC (Moment-Generalized Equivalent Circuit) method to study a finite periodic array with uniform amplitude and linear phase distribution. This method is very advantageous for studying large antenna array since it considerably reduces the computation time and the number of operations. In this way, Genetic algorithm is introduced and combined with Floquet analysis to optimize the radiation pattern distribution of this coupled periodic antenna. The goal of the optimization is to provide a better radiation characteristic for the coupled periodic antenna with maximum side lobe level reduction.
文摘The methods of moment and genetic algorithm (GA) are combined to optimize the Yagi Uda antenna array and Log periodic dipole antenna (LPDA) array. The element lengths and spacing are optimized for the Yagi Uda array; while the ratio factor of spacing to length as well as the ratio of length to diameter of the elements are optimized for LPDA array. The results show that the main parameters, such as gain and pattern, have been improved apparently; and the high back lobe level of LPDA can be reduced greatly, therefore, GA is a very competent method for optimizing the linear array as well as in other fields.
文摘A Cassegrainian antenna with frequency selective reflector is introduced, and the measured radiation properties and radar cross-section (RCS) of the antenna are given and discussed. In comparison with ordinary metallic reflector, this antenna can obtain similar radiation pattern and about 15dB of RCS reduction.