We propose a subsampling method for robust estimation of regression models which is built on classical methods such as the least squares method. It makes use of the non-robust nature of the underlying classical method...We propose a subsampling method for robust estimation of regression models which is built on classical methods such as the least squares method. It makes use of the non-robust nature of the underlying classical method to find a good sample from regression data contaminated with outliers, and then applies the classical method to the good sample to produce robust estimates of the regression model parameters. The subsampling method is a computational method rooted in the bootstrap methodology which trades analytical treatment for intensive computation;it finds the good sample through repeated fitting of the regression model to many random subsamples of the contaminated data instead of through an analytical treatment of the outliers. The subsampling method can be applied to all regression models for which non-robust classical methods are available. In the present paper, we focus on the basic formulation and robustness property of the subsampling method that are valid for all regression models. We also discuss variations of the method and apply it to three examples involving three different regression models.展开更多
Conventional full-waveform inversion is computationally intensive because it considers all shots in each iteration. To tackle this, we establish the number of shots needed and propose multiscale inversion in the frequ...Conventional full-waveform inversion is computationally intensive because it considers all shots in each iteration. To tackle this, we establish the number of shots needed and propose multiscale inversion in the frequency domain while using only the shots that are positively correlated with frequency. When using low-frequency data, the method considers only a small number of shots and raw data. More shots are used with increasing frequency. The random-in-group subsampling method is used to rotate the shots between iterations and avoid the loss of shot information. By reducing the number of shots in the inversion, we decrease the computational cost. There is no crosstalk between shots, no noise addition, and no observational limits. Numerical modeling suggests that the proposed method reduces the computing time, is more robust to noise, and produces better velocity models when using data with noise.展开更多
As a less time-consuming procedure, subsampling technology has been widely used in biological monitoring and assessment programs. It is clear that subsampling counts af fect the value of traditional biodiversity indic...As a less time-consuming procedure, subsampling technology has been widely used in biological monitoring and assessment programs. It is clear that subsampling counts af fect the value of traditional biodiversity indices, but its ef fect on taxonomic distinctness(TD) indices is less well studied. Here, we examined the responses of traditional(species richness, Shannon-Wiener diversity) and TD(average taxonomic distinctness: Δ +, and variation in taxonomic distinctness: Λ +) indices to subsample counts using a random subsampling procedure from 50 to 400 individuals, based on macroinvertebrate datasets from three dif ferent river systems in China. At regional scale, taxa richness asymptotically increased with ?xed-count size; ≥250–300 individuals to express 95% information of the raw data. In contrast, TD indices were less sensitive to the subsampling procedure. At local scale, TD indices were more stable and had less deviation than species richness and Shannon-Wiener index, even at low subsample counts, with ≥100 individuals needed to estimate 95% of the information of the actual Δ + and Λ + in the three river basins. We also found that abundance had a certain ef fect on diversity indices during the subsampling procedure, with dif ferent subsampling counts for species richness and TD indices varying by regions. Therefore, we suggest that TD indices are suitable for biodiversity assessment and environment monitoring. Meanwhile, pilot analyses are necessary when to determine the appropriate subsample counts for bioassessment in a new region or habitat type.展开更多
A new faster block-matching algorithm (BMA) by using both search candidate and pixd sulzsamplings is proposed. Firstly a pixd-subsampling approach used in adjustable partial distortion search (APDS) is adjusted to...A new faster block-matching algorithm (BMA) by using both search candidate and pixd sulzsamplings is proposed. Firstly a pixd-subsampling approach used in adjustable partial distortion search (APDS) is adjusted to visit about half points of all search candidates by subsampling them, using a spiral-scanning path with one skip. Two sdected candidates that have minimal and second minimal block distortion measures are obtained. Then a fine-tune step is taken around them to find the best one. Some analyses are given to approve the rationality of the approach of this paper. Experimental results show that, as compared to APDS, the proposed algorithm can enhance the block-matching speed by about 30% while maintaining its MSE performance very close to that of it. And it performs much better than many other BMAs such as TSS, NTSS, UCDBS and NPDS.展开更多
In rough communication, because each agent has a different language and can not provide precise communication to each other, the concept translated among multi-agents will loss some information, and this results in a ...In rough communication, because each agent has a different language and can not provide precise communication to each other, the concept translated among multi-agents will loss some information, and this results in a less or rougher concept. With different translation sequences the amount of the missed knowledge is varied. The λ-optimal translation sequence of rough communication, which concerns both every agent and the last agent taking part in rough communication to get information as much as he (or she) can, is given. In order to get the λ-optimal translation sequence, a genetic algorithm is used. Analysis and simulation of the algorithm demonstrate the effectiveness of the approach.展开更多
In this paper we apply the directional derivative technique to characterize D-multifunction, quasi D-multifunction and use them to obtain ε-optimality for set valued vector optimization problem with multivalued maps....In this paper we apply the directional derivative technique to characterize D-multifunction, quasi D-multifunction and use them to obtain ε-optimality for set valued vector optimization problem with multivalued maps. We introduce the notions of local and partial-ε-minimum (weak) point and study ε-optimality, ε-Lagrangian multiplier theorem and ε-duality results.展开更多
In this paper, we consider the unified optimal subsampling estimation and inference on the lowdimensional parameter of main interest in the presence of the nuisance parameter for low/high-dimensionalgeneralized linear...In this paper, we consider the unified optimal subsampling estimation and inference on the lowdimensional parameter of main interest in the presence of the nuisance parameter for low/high-dimensionalgeneralized linear models (GLMs) with massive data. We first present a general subsampling decorrelated scorefunction to reduce the influence of the less accurate nuisance parameter estimation with the slow convergencerate. The consistency and asymptotic normality of the resultant subsample estimator from a general decorrelatedscore subsampling algorithm are established, and two optimal subsampling probabilities are derived under theA- and L-optimality criteria to downsize the data volume and reduce the computational burden. The proposedoptimal subsampling probabilities provably improve the asymptotic efficiency of the subsampling schemes in thelow-dimensional GLMs and perform better than the uniform subsampling scheme in the high-dimensional GLMs.A two-step algorithm is further proposed to implement, and the asymptotic properties of the correspondingestimators are also given. Simulations show satisfactory performance of the proposed estimators, and twoapplications to census income and Fashion-MNIST datasets also demonstrate its practical applicability.展开更多
文摘We propose a subsampling method for robust estimation of regression models which is built on classical methods such as the least squares method. It makes use of the non-robust nature of the underlying classical method to find a good sample from regression data contaminated with outliers, and then applies the classical method to the good sample to produce robust estimates of the regression model parameters. The subsampling method is a computational method rooted in the bootstrap methodology which trades analytical treatment for intensive computation;it finds the good sample through repeated fitting of the regression model to many random subsamples of the contaminated data instead of through an analytical treatment of the outliers. The subsampling method can be applied to all regression models for which non-robust classical methods are available. In the present paper, we focus on the basic formulation and robustness property of the subsampling method that are valid for all regression models. We also discuss variations of the method and apply it to three examples involving three different regression models.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.201822011)the National Natural Science Foundation of China(No.41674118)the National Science and Technology Major Project(No.2016ZX05027002)
文摘Conventional full-waveform inversion is computationally intensive because it considers all shots in each iteration. To tackle this, we establish the number of shots needed and propose multiscale inversion in the frequency domain while using only the shots that are positively correlated with frequency. When using low-frequency data, the method considers only a small number of shots and raw data. More shots are used with increasing frequency. The random-in-group subsampling method is used to rotate the shots between iterations and avoid the loss of shot information. By reducing the number of shots in the inversion, we decrease the computational cost. There is no crosstalk between shots, no noise addition, and no observational limits. Numerical modeling suggests that the proposed method reduces the computing time, is more robust to noise, and produces better velocity models when using data with noise.
基金Supported by the National Natural Science Foundation of China(Nos.31400469,41571495,31770460)the National Science and Technology Basic Research Program(No.2015FY110400-4)+2 种基金the China Three Gorges Corporation Research Project(No.JGJ/0272015)the Key Program of the Chinese Academy of Sciences(Comprehensive Assessment Technology of River Ecology and Environment for the Water Source Region of "South-toNorth Water Diversion Central Route")the Program for Biodiversity Protection(No.2017HB2096001006)
文摘As a less time-consuming procedure, subsampling technology has been widely used in biological monitoring and assessment programs. It is clear that subsampling counts af fect the value of traditional biodiversity indices, but its ef fect on taxonomic distinctness(TD) indices is less well studied. Here, we examined the responses of traditional(species richness, Shannon-Wiener diversity) and TD(average taxonomic distinctness: Δ +, and variation in taxonomic distinctness: Λ +) indices to subsample counts using a random subsampling procedure from 50 to 400 individuals, based on macroinvertebrate datasets from three dif ferent river systems in China. At regional scale, taxa richness asymptotically increased with ?xed-count size; ≥250–300 individuals to express 95% information of the raw data. In contrast, TD indices were less sensitive to the subsampling procedure. At local scale, TD indices were more stable and had less deviation than species richness and Shannon-Wiener index, even at low subsample counts, with ≥100 individuals needed to estimate 95% of the information of the actual Δ + and Λ + in the three river basins. We also found that abundance had a certain ef fect on diversity indices during the subsampling procedure, with dif ferent subsampling counts for species richness and TD indices varying by regions. Therefore, we suggest that TD indices are suitable for biodiversity assessment and environment monitoring. Meanwhile, pilot analyses are necessary when to determine the appropriate subsample counts for bioassessment in a new region or habitat type.
基金This project was supported by the National Natural Science Foundation of China (60272099) .
文摘A new faster block-matching algorithm (BMA) by using both search candidate and pixd sulzsamplings is proposed. Firstly a pixd-subsampling approach used in adjustable partial distortion search (APDS) is adjusted to visit about half points of all search candidates by subsampling them, using a spiral-scanning path with one skip. Two sdected candidates that have minimal and second minimal block distortion measures are obtained. Then a fine-tune step is taken around them to find the best one. Some analyses are given to approve the rationality of the approach of this paper. Experimental results show that, as compared to APDS, the proposed algorithm can enhance the block-matching speed by about 30% while maintaining its MSE performance very close to that of it. And it performs much better than many other BMAs such as TSS, NTSS, UCDBS and NPDS.
基金supported by the National Natural Science Foundation of China(61070241)the Natural Science Foundation of Shandong Province(ZR2010FM035)+1 种基金the Science and Technology Foundation of University of Jinan(XKY1031XKY0808)
文摘In rough communication, because each agent has a different language and can not provide precise communication to each other, the concept translated among multi-agents will loss some information, and this results in a less or rougher concept. With different translation sequences the amount of the missed knowledge is varied. The λ-optimal translation sequence of rough communication, which concerns both every agent and the last agent taking part in rough communication to get information as much as he (or she) can, is given. In order to get the λ-optimal translation sequence, a genetic algorithm is used. Analysis and simulation of the algorithm demonstrate the effectiveness of the approach.
文摘In this paper we apply the directional derivative technique to characterize D-multifunction, quasi D-multifunction and use them to obtain ε-optimality for set valued vector optimization problem with multivalued maps. We introduce the notions of local and partial-ε-minimum (weak) point and study ε-optimality, ε-Lagrangian multiplier theorem and ε-duality results.
基金Acknowledgment This work was supported by Beijing Natural Science Foundation Funded Project (No.4110001), National S&T Major Project (No. 2011ZX03003-002), Tsinghua Independent Research (No. 2010TH203-02) and Samsung Company.
基金This work was supported by the Fundamental Research Funds for the Central Universities,National Natural Science Foundation of China(Grant No.12271272)and the Key Laboratory for Medical Data Analysis and Statistical Research of Tianjin.
文摘In this paper, we consider the unified optimal subsampling estimation and inference on the lowdimensional parameter of main interest in the presence of the nuisance parameter for low/high-dimensionalgeneralized linear models (GLMs) with massive data. We first present a general subsampling decorrelated scorefunction to reduce the influence of the less accurate nuisance parameter estimation with the slow convergencerate. The consistency and asymptotic normality of the resultant subsample estimator from a general decorrelatedscore subsampling algorithm are established, and two optimal subsampling probabilities are derived under theA- and L-optimality criteria to downsize the data volume and reduce the computational burden. The proposedoptimal subsampling probabilities provably improve the asymptotic efficiency of the subsampling schemes in thelow-dimensional GLMs and perform better than the uniform subsampling scheme in the high-dimensional GLMs.A two-step algorithm is further proposed to implement, and the asymptotic properties of the correspondingestimators are also given. Simulations show satisfactory performance of the proposed estimators, and twoapplications to census income and Fashion-MNIST datasets also demonstrate its practical applicability.