Prestack reverse time migration (RTM) is an accurate imaging method ofsubsurface media. The viscoacoustic prestack RTM is of practical significance because itconsiders the viscosity of the subsurface media. One of t...Prestack reverse time migration (RTM) is an accurate imaging method ofsubsurface media. The viscoacoustic prestack RTM is of practical significance because itconsiders the viscosity of the subsurface media. One of the steps of RTM is solving thewave equation and extrapolating the wave field forward and backward; therefore, solvingaccurately and efficiently the wave equation affects the imaging results and the efficiencyof RTM. In this study, we use the optimal time-space domain dispersion high-order finite-difference (FD) method to solve the viscoacoustic wave equation. Dispersion analysis andnumerical simulations show that the optimal time-space domain FD method is more accurateand suppresses the numerical dispersion. We use hybrid absorbing boundary conditions tohandle the boundary reflection. We also use source-normalized cross-correlation imagingconditions for migration and apply Laplace filtering to remove the low-frequency noise.Numerical modeling suggests that the viscoacoustic wave equation RTM has higher imagingresolution than the acoustic wave equation RTM when the viscosity of the subsurface isconsidered. In addition, for the wave field extrapolation, we use the adaptive variable-lengthFD operator to calculate the spatial derivatives and improve the computational efficiencywithout compromising the accuracy of the numerical solution.展开更多
Several theorems on closed (resp. open) covering properties of H-spaces are obtained which improve and generalize the corresponding results of Sperner, Klee, Alexandroff-Pasynkoff, Berge, Ghouila-Houri, Danzer-Grunbau...Several theorems on closed (resp. open) covering properties of H-spaces are obtained which improve and generalize the corresponding results of Sperner, Klee, Alexandroff-Pasynkoff, Berge, Ghouila-Houri, Danzer-Grunbaum-Klee, Ky Fan, Shih-Tan, Horvath and Lassonde. As application an almost fixed point theorem for lower semi-continuous map in l.c.-spaces and a generalization of Tychonoffs fixed point theorem are proved in l.c.-spaces which improve those results of Ky Fan and Horvath.展开更多
The paper studies the propagation of Love waves in a non-homogeneous substratum over an initially stressed heterogeneous half-space. The dispersion equation of phase velocity is derived. The velocities of Love waves a...The paper studies the propagation of Love waves in a non-homogeneous substratum over an initially stressed heterogeneous half-space. The dispersion equation of phase velocity is derived. The velocities of Love waves are calculated numerically as a function of kH and presented in a number of graphs, where k is the wave number, and H is the thickness of the layer. The case of Gibson's half-space is also considered. It is observed that the speed of Love waves is finite in the vicinity of the surface of the half-space and vanishes as the depth increases for a particular wave number. It is also observed that an increase in compressive initial stresses causes decreases of Love waves velocity for the same frequency, and the tensile initial stress of small magnitude in the half-space causes increase of the velocity.展开更多
Let E and F be Banach lattices. It is known that if every continuous linear operator from E into F is regular, then, under some mild assumptions on E or F, either E is lattice isomorphic to an AL-space or F is lattice...Let E and F be Banach lattices. It is known that if every continuous linear operator from E into F is regular, then, under some mild assumptions on E or F, either E is lattice isomorphic to an AL-space or F is lattice isomorphic to an AM-space. Here we present a characterization on an AL-space E such that every bounded linear operator from E into a Banach lattice is regular. A counterexample is also provided, which shows that the results are unexpected even if the domain is an AL-space or the range space is an AM-space.展开更多
基金This research was supported by the National Nature Science Foundation of China (No. 41074100) and the Program for NewCentury Excellent Talents in the University of the Ministry of Education of China (No. NCET- 10-0812).
文摘Prestack reverse time migration (RTM) is an accurate imaging method ofsubsurface media. The viscoacoustic prestack RTM is of practical significance because itconsiders the viscosity of the subsurface media. One of the steps of RTM is solving thewave equation and extrapolating the wave field forward and backward; therefore, solvingaccurately and efficiently the wave equation affects the imaging results and the efficiencyof RTM. In this study, we use the optimal time-space domain dispersion high-order finite-difference (FD) method to solve the viscoacoustic wave equation. Dispersion analysis andnumerical simulations show that the optimal time-space domain FD method is more accurateand suppresses the numerical dispersion. We use hybrid absorbing boundary conditions tohandle the boundary reflection. We also use source-normalized cross-correlation imagingconditions for migration and apply Laplace filtering to remove the low-frequency noise.Numerical modeling suggests that the viscoacoustic wave equation RTM has higher imagingresolution than the acoustic wave equation RTM when the viscosity of the subsurface isconsidered. In addition, for the wave field extrapolation, we use the adaptive variable-lengthFD operator to calculate the spatial derivatives and improve the computational efficiencywithout compromising the accuracy of the numerical solution.
基金This project partially supported by National Natural Science Foundation of ChinaThis work was partially supported by NSERC of Canada under grant A-8096
文摘Several theorems on closed (resp. open) covering properties of H-spaces are obtained which improve and generalize the corresponding results of Sperner, Klee, Alexandroff-Pasynkoff, Berge, Ghouila-Houri, Danzer-Grunbaum-Klee, Ky Fan, Shih-Tan, Horvath and Lassonde. As application an almost fixed point theorem for lower semi-continuous map in l.c.-spaces and a generalization of Tychonoffs fixed point theorem are proved in l.c.-spaces which improve those results of Ky Fan and Horvath.
文摘The paper studies the propagation of Love waves in a non-homogeneous substratum over an initially stressed heterogeneous half-space. The dispersion equation of phase velocity is derived. The velocities of Love waves are calculated numerically as a function of kH and presented in a number of graphs, where k is the wave number, and H is the thickness of the layer. The case of Gibson's half-space is also considered. It is observed that the speed of Love waves is finite in the vicinity of the surface of the half-space and vanishes as the depth increases for a particular wave number. It is also observed that an increase in compressive initial stresses causes decreases of Love waves velocity for the same frequency, and the tensile initial stress of small magnitude in the half-space causes increase of the velocity.
文摘Let E and F be Banach lattices. It is known that if every continuous linear operator from E into F is regular, then, under some mild assumptions on E or F, either E is lattice isomorphic to an AL-space or F is lattice isomorphic to an AM-space. Here we present a characterization on an AL-space E such that every bounded linear operator from E into a Banach lattice is regular. A counterexample is also provided, which shows that the results are unexpected even if the domain is an AL-space or the range space is an AM-space.