We present a new analytical model for electrostatically actuated microbeams to explore the size effect by using the modified couple stress theory and the minimum total potential energy principle. A material length sca...We present a new analytical model for electrostatically actuated microbeams to explore the size effect by using the modified couple stress theory and the minimum total potential energy principle. A material length scale parameter is introduced to represent the size-dependent characteristics of microbeams. This model also accounts for the nonlinearities associated with the mid-plane stretching force and the electrostatical force. Numerical analysis for microbeams with clamped-clamped and cantilevered conditions has been performed. It is found that the intensity of size effect is closely associated with the thickness of the microbeam,and smaller beam thickness displays stronger size effect and hence yields smaller deffection and larger pull-in voltage. When the beam thickness is comparable to the material length scale parameter,the size effect is significant and the present theoretical model including the material length scale parameter is adequate for predicting the static behavior of microbeam-based MEMS.展开更多
We study here effects of nozzle layout on the droplet ejection of a micro atomizer, which was fabricated with the arrayed nozzles by the MEMS technology and actuated by a piezoelectric disc. A theoretical model was fi...We study here effects of nozzle layout on the droplet ejection of a micro atomizer, which was fabricated with the arrayed nozzles by the MEMS technology and actuated by a piezoelectric disc. A theoretical model was first built for this piezoelectric-liquid-structure coupling system to characterize the acoustic wave propagation in the liquid chamber, which determined the droplet formation out of nozzles. The modal analysis was carried out numerically to predict resonant frequencies and simulate the corresponding pressure wave field. By comparing the amplitude contours of pressure wave on the liquid-solid interface at nozzle inlets with the designed nozzle layout, behaviors of the device under different vibration modes can be predicted. Experimentally, an impedance analyzer was used to measure the resonant frequencies of the system. Three types of atomizers with different nozzle layouts were fabricated for measuring the effect of nozzle distribution on the ejection performance. The visualization experiment of droplet generation was carried out and volume flow rates of these devices were measured. The good agreement between the experiment and the prediction proved that only the increase of nozzles may not enhance the droplet generation and a design of nozzle distribution from a view-point of frequency is necessary for a resonant related atomizer.展开更多
文摘We present a new analytical model for electrostatically actuated microbeams to explore the size effect by using the modified couple stress theory and the minimum total potential energy principle. A material length scale parameter is introduced to represent the size-dependent characteristics of microbeams. This model also accounts for the nonlinearities associated with the mid-plane stretching force and the electrostatical force. Numerical analysis for microbeams with clamped-clamped and cantilevered conditions has been performed. It is found that the intensity of size effect is closely associated with the thickness of the microbeam,and smaller beam thickness displays stronger size effect and hence yields smaller deffection and larger pull-in voltage. When the beam thickness is comparable to the material length scale parameter,the size effect is significant and the present theoretical model including the material length scale parameter is adequate for predicting the static behavior of microbeam-based MEMS.
基金the National Natural Science Foundation of China(50405001).
文摘We study here effects of nozzle layout on the droplet ejection of a micro atomizer, which was fabricated with the arrayed nozzles by the MEMS technology and actuated by a piezoelectric disc. A theoretical model was first built for this piezoelectric-liquid-structure coupling system to characterize the acoustic wave propagation in the liquid chamber, which determined the droplet formation out of nozzles. The modal analysis was carried out numerically to predict resonant frequencies and simulate the corresponding pressure wave field. By comparing the amplitude contours of pressure wave on the liquid-solid interface at nozzle inlets with the designed nozzle layout, behaviors of the device under different vibration modes can be predicted. Experimentally, an impedance analyzer was used to measure the resonant frequencies of the system. Three types of atomizers with different nozzle layouts were fabricated for measuring the effect of nozzle distribution on the ejection performance. The visualization experiment of droplet generation was carried out and volume flow rates of these devices were measured. The good agreement between the experiment and the prediction proved that only the increase of nozzles may not enhance the droplet generation and a design of nozzle distribution from a view-point of frequency is necessary for a resonant related atomizer.