Purpose:The disseminating of academic knowledge to nonacademic audiences partly relies on the transition of subsequent citing papers.This study aims to investigate direct and indirect impact on technology and policy o...Purpose:The disseminating of academic knowledge to nonacademic audiences partly relies on the transition of subsequent citing papers.This study aims to investigate direct and indirect impact on technology and policy originating from transformative research based on ego citation network.Design/methodology/approach:Key Nobel Prize-winning publications(NPs)in fields of gene engineering and astrophysics are regarded as a proxy for transformative research.In this contribution,we introduce a network-structural indicator of citing patents to measure technological impact of a target article and use policy citations as a preliminary tool for policy impact.Findings:The results show that the impact on technology and policy of NPs are higher than that of their subsequent citation generations in gene engineering but not in astrophysics.Research limitations:The selection of Nobel Prizes is not balanced and the database used in this study,Dimensions,suffers from incompleteness and inaccuracy of citation links.Practical implications:Our findings provide useful clues to better understand the characteristics of transformative research in technological and policy impact.Originality/value:This study proposes a new framework to explore the direct and indirect impact on technology and policy originating from transformative research.展开更多
The rapid development of communication technology and computer networks has brought a lot of convenience to production and life,but it also increases the security problem.Information security has become one of the sev...The rapid development of communication technology and computer networks has brought a lot of convenience to production and life,but it also increases the security problem.Information security has become one of the severe challenges faced by people in the digital age.Currently,the security problems facing the field of communication technology and computer networks in China mainly include the evolution of offensive technology,the risk of large-scale data transmission,the potential vulnerabilities introduced by emerging technology,and the dilemma of user identity verification.This paper analyzes the frontier challenges of communication technology and computer network security,and puts forward corresponding solutions,hoping to provide ideas for coping with the security challenges of communication technology and computer networks.展开更多
The problem of mine water source has always been an important hidden danger in mine safety production.The water source under the mine working face may lead to geological disasters,such as mine collapse and water disas...The problem of mine water source has always been an important hidden danger in mine safety production.The water source under the mine working face may lead to geological disasters,such as mine collapse and water disaster.The research background of mine water source identification involves many fields such as mining production,environmental protection,resource utilization and technological progress.It is a comprehensive and interdisciplinary subject,which helps to improve the safety and sustainability of mine production.Therefore,timely and accurate identification and control of mine water source is very important to ensure mine production safety.Laser-Induced Fluorescence(LIF)technology,characterized by high sensitivity,specificity,and spatial resolution,overcomes the time-consuming nature of traditional chemical methods.In this experiment,sandstone water and old air water were collected from the Huainan mining area as original samples.Five types of mixed water samples were prepared by varying their proportions,in addition to the two original water samples,resulting in a total of seven different water samples for testing.Four preprocessing methods,namely,MinMaxScaler,StandardScaler,Standard Normal Variate(SNV)transformation,and Centering Transformation(CT),were applied to preprocess the original spectral data to reduce noise and interference.CT was determined as the optimal preprocessing method based on class discrimination,data distribution,and data range.To maintain the original data features while reducing the data dimension,including the original spectral data,five sets of data were subjected to Principal Component Analysis(PCA)and Linear Discriminant Analysis(LDA)dimensionality reduction.Through comparing the clustering effect and Fisher's ratio of the first three dimensions,PCA was identified as the optimal dimensionality reduction method.Finally,two neural network models,CT+PCA+CNN and CT+PCA+ResNet,were constructed by combining Convolutional Neural Networks(CNN)and Residual Neural Networks(ResNet),respectively.When selecting the neural network models,the training time,number of iterative parameters,accuracy,and cross-entropy loss function in the classification problem were compared to determine the model best suited for water source data.The results indicated that CT+PCA+ResNet was the optimal approach for water source identification in this study.展开更多
Chloroplast is a discrete,highly structured,and semi-autonomous cellular organelle.The small genome of chloroplast makes it an up-and-coming platform for synthetic biology.As a special means of synthetic biology,chlor...Chloroplast is a discrete,highly structured,and semi-autonomous cellular organelle.The small genome of chloroplast makes it an up-and-coming platform for synthetic biology.As a special means of synthetic biology,chloroplast genetic engineering shows excellent potential in reconstructing various sophisticated metabolic pathways within the plants for specific purposes,such as improving crop photosynthetic capacity,enhancing plant stress resistance,and synthesizing new drugs and vaccines.However,many plant species exhibit limited efficiency or inability in chloroplast genetic transformation.Hence,new transformation technologies and tools are being constantly developed.In order to further expand and facilitate the application of chloroplast genetic engineering,this review summarizes the new technologies in chloroplast genetic transformation in recent years and discusses the choice of appropriate synthetic biological elements for the construction of efficient chloroplast transformation vectors.展开更多
A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL...A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.展开更多
Sodium nitrate passivation has been developed as a new insulation technology for the production of FeSiAl soft magnetic composites (SMCs). In this work, the evolution of coating layers grown at different pH values is ...Sodium nitrate passivation has been developed as a new insulation technology for the production of FeSiAl soft magnetic composites (SMCs). In this work, the evolution of coating layers grown at different pH values is investigated involving analyses on their composition and microstructure. An insulation coating obtained using an acidic NaNO_(3) solution is found to contain Fe2O_(3), SiO_(2), Al2O_(3), and AlO(OH). The Fe2O_(3) transforms into Fe3O4 with weakened oxidizability of the NO_(3)– at an elevated pH, whereas an alkaline NaNO_(3) solution leads to the production of Al2O_(3), AlO(OH), and SiO_(2). Such growth is explained from both thermodynamic and kinetic perspectives and is correlated to the soft magnetic properties of the FeSiAl SMCs. Under tuned passivation conditions, optimal performance with an effective permeability of 97.2 and a core loss of 296.4 mW∙cm−3 is achieved at 50 kHz and 100 mT.展开更多
Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"a...Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"and"Underground Resource Utiliza-tion".Starting from the development of Compressed Air Energy Storage(CAES)technology,the site selection of CAES in depleted gas and oil reservoirs,the evolution mechanism of reservoir dynamic sealing,and the high-flow CAES and injection technology are summarized.It focuses on analyzing the characteristics,key equipment,reservoir construction,application scenarios and cost analysis of CAES projects,and sorting out the technical key points and existing difficulties.The devel-opment trend of CAES technology is proposed,and the future development path is scrutinized to provide reference for the research of CAES projects in depleted oil and gas reservoirs.展开更多
Objective:To detect common chromosomal aneuploidy variations in embryos from couples undergoing assisted reproductive technology and preimplantation genetic screening and their possible associations with embryo qualit...Objective:To detect common chromosomal aneuploidy variations in embryos from couples undergoing assisted reproductive technology and preimplantation genetic screening and their possible associations with embryo quality.Methods:In this study,359 embryos from 62 couples were screened for chromosomes 13,21,18,X,and Y by fluorescence insitu hybridization.For biopsy of blastomere,a laser was used to remove a significantly smaller portion of the zona pellucida.One blastomere was gently biopsied by an aspiration pipette through the hole.After biopsy,the embryo was immediately returned to the embryo scope until transfer.Embryo integrity and blastocyst formation were assessed on day 5.Results:Totally,282 embryos from 62 couples were evaluated.The chromosomes were normal in 199(70.57%)embryos and abnormal in 83(29.43%)embryos.There was no significant association between the quality of embryos and numerical chromosomal abnormality(P=0.67).Conclusions:Embryo quality is not significantly correlated with its genetic status.Hence,the quality of embryos determined by morphological parameters is not an appropriate method for choosing embryos without these abnormalities.展开更多
Recurrent spontaneous abortion (RSA) is a complex and heterogeneous disorder with multiple etiologies. Genetic factors are thought to play an important role in the etiology of RSA. With recent advances in genetic test...Recurrent spontaneous abortion (RSA) is a complex and heterogeneous disorder with multiple etiologies. Genetic factors are thought to play an important role in the etiology of RSA. With recent advances in genetic testing technologies, there has been an increasing interest in using these tools to diagnose the etiology of RSA. This review discusses the different types of genetic testing methods, such as karyotyping, chromosomal microarray analysis, next-generation sequencing, and their applications in the diagnosis of the etiology RSA. The use of genetic testing in the diagnosis of RSA has the potential to improve the accuracy of diagnosis and the understanding of the underlying mechanisms of the disorder, which could lead to better management and treatment of affected individuals.展开更多
BACKGROUND Erythrocyte alloantibodies are mainly produced after immune stimulation,such as blood transfusion,pregnancy,and transplantation,and are the leading causes of severe hemolytic transfusion reactions and diffi...BACKGROUND Erythrocyte alloantibodies are mainly produced after immune stimulation,such as blood transfusion,pregnancy,and transplantation,and are the leading causes of severe hemolytic transfusion reactions and difficulty in blood grouping and matching.Therefore,antibody screening is critical to prevent and improve red cell alloantibodies.Routine tube assay is the primary detection method of antibody screening.Recently,erythrocyte-magnetized technology(EMT)has been increasingly used in clinical practice.This study intends to probe the application and efficacy of the conventional tube and EMT in red blood cell alloantibody titration to provide a reference for clinical blood transfusion.AIM To investigate the application value of conventional tube and EMT in red blood cell alloantibody titration and enhance the safety of blood transfusion practice.METHODS A total of 1298 blood samples were harvested from blood donors at the Department of Blood Transfusion of our hospital from March 2021 to December 2022.A 5 mL blood sample was collected in tubing,which was then cut,and the whole blood was put into a test tube for centrifugation to separate the serum.Different red blood cell blood group antibody titers were simultaneously detected using the tube polybrene test,tube antiglobulin test(AGT),and EMT screening irregular antibody methods to determine the best test method.RESULTS Simultaneous detection was performed through the tube polybrene test,tube AGT and EMT screening irregular antibodies.It was discovered that the EMT screening irregular antibody method could detect all immunoglobulin G(IgG)and immunoglobulin M(IgM)irregular antibodies,and the results of manual tube AGT were satisfactory,but the operation time was lengthy,and the equipment had a large footprint.The EMT screening irregular antibody assay was also conducted to determine its activity against type O Rh(D)red blood cells,and the outcomes were satisfactory.Furthermore,compared to the conventional tube method,the EMT screening irregular antibody method was more cost-effective and had significantly higher detection efficiency.CONCLUSION With a higher detection rate,the EMT screening irregular antibody method can detect both IgG and IgM irregular antibodies faster and more effectively than the conventional tube method.展开更多
Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES te...Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES technology advances,accommodating greater depth,higher temperature and multi-energy complementarity,new research challenges emerge.This paper comprehensively provides a systematic summary of the current research status of UTES.It categorized different types of UTES systems,analyzes the applicability of key technologies of UTES,and evaluate their economic and environmental benefits.Moreover,this paper identifies existing issues with UTES,such as injection blockage,wellbore scaling and corrosion,seepage and heat transfer in cracks,etc.It suggests deepening the research on blockage formation mechanism and plugging prevention technology,improving the study of anticorrosive materials and water treatment technology,and enhancing the investigation of reservoir fracture network characterization technology and seepage heat transfer.These recommendations serve as valuable references for promoting the high-quality development of UTES.展开更多
As a basic technology at physical layer of mobile communications,non-orthogonal multiple access has been attracting wide attention across the academia and the industry.During the standardization of the fifth-generatio...As a basic technology at physical layer of mobile communications,non-orthogonal multiple access has been attracting wide attention across the academia and the industry.During the standardization of the fifth-generation(5G)of mobile communications,3GPP conducted preliminary study on non-orthogonal multiple access without reaching the consensus to standardize the technology.展开更多
BACKGROUND Infectious diseases are still one of the greatest threats to human health,and the etiology of 20%of cases of clinical fever is unknown;therefore,rapid identification of pathogens is highly important.Traditi...BACKGROUND Infectious diseases are still one of the greatest threats to human health,and the etiology of 20%of cases of clinical fever is unknown;therefore,rapid identification of pathogens is highly important.Traditional culture methods are only able to detect a limited number of pathogens and are time-consuming;serologic detection has window periods,false-positive and false-negative problems;and nucleic acid molecular detection methods can detect several known pathogens only once.Three-generation nanopore sequencing technology provides new options for identifying pathogens.CASE SUMMARY Case 1:The patient was admitted to the hospital with abdominal pain for three days and cessation of defecation for five days,accompanied by cough and sputum.Nanopore sequencing of the drainage fluid revealed the presence of orallike bacteria,leading to a clinical diagnosis of bronchopleural fistula.Cefoperazone sodium sulbactam treatment was effective.Case 2:The patient was admitted to the hospital with fever and headache,and CT revealed lung inflammation.Antibiotic treatment for Streptococcus pneumoniae,identified through nanopore sequencing of cerebrospinal fluid,was effective.Case 3:The patient was admitted to our hospital with intermittent fever and an enlarged neck mass that had persisted for more than six months.Despite antibacterial treatment,her symptoms worsened.The nanopore sequencing results indicate that voriconazole treatment is effective for Aspergillus brookii.The patient was diagnosed with mixed cell type classical Hodgkin's lymphoma with infection.CONCLUSION Three-generation nanopore sequencing technology allows for rapid and accurate detection of pathogens in human infectious diseases.展开更多
Pre-modern Chinese crafts,such as iron smelting,cookery,medicine,and the production of vehicles,bows,and arrows indicate the traditional Chinese view of technology as being organic,holistic,and comprehensive.This view...Pre-modern Chinese crafts,such as iron smelting,cookery,medicine,and the production of vehicles,bows,and arrows indicate the traditional Chinese view of technology as being organic,holistic,and comprehensive.This view of technology is guided by the concept of he(和)and employs the means and methods of he,thus achieving the purport of he.In Chinese,the character he(和)possesses positive connotations.It originated from the meaning of"to season;to add flavoring to"(调和)and that of flavors being"perfectly harmonious"(和美).From this sensory experience,he gradually extended to the abstract levels of materiality,humanity,sociality,"order"(wei位),and "power,situation,force"(shi势).Finally,he was elevated to the supreme level of"qi of great harmony"(taihe zhi qi太和之气),which is comparable to the concept of dao(道).The philosophy of he has exerted wide impact on such areas as technology,art,national character,cultural psychology,and behavior patterns,and has become an integral part of China's inherent culture.The paradoxes and deviations of he hold their own profound philosophical implications that merit further exploration.As humanity confronts significant challenges,such as how we can coexist with others,with technology,and with nature,the ancient Eastern wisdom embodied in he continues to possess practical characteristics and value.展开更多
Purpose:Nanomedicine has significant potential to revolutionize biomedicine and healthcare through innovations in diagnostics,therapeutics,and regenerative medicine.This study aims to develop a novel framework that in...Purpose:Nanomedicine has significant potential to revolutionize biomedicine and healthcare through innovations in diagnostics,therapeutics,and regenerative medicine.This study aims to develop a novel framework that integrates advanced natural language processing,noise-free topic modeling,and multidimensional bibliometrics to systematically identify emerging nanomedicine technology topics from scientific literature.Design/methodology/approach:The framework involves collecting full-text articles from PubMed Central and nanomedicine-related metrics from the Web of Science for the period 2013-2023.A fine-tuned BERT model is employed to extract key informative sentences.Noiseless Latent Dirichlet Allocation(NLDA)is applied to model interpretable topics from the cleaned corpus.Additionally,we develop and apply metrics for novelty,innovation,growth,impact,and intensity to quantify the emergence of novel technological topics.Findings:By applying this methodology to nanomedical publications,we identify an increasing emphasis on research aligned with global health priorities,particularly inflammation and biomaterial interactions in disease research.This methodology provides deeper insights through full-text analysis and leading to a more robust discovery of emerging technologies.Research limitations:One limitation of this study is its reliance on the existing scientific literature,which may introduce publication biases and language constraints.Additionally,manual annotation of the dataset,while thorough,is subject to subjectivity and can be time-consuming.Future research could address these limitations by incorporating more diverse data sources,and automating the annotation process.Practical implications:The methodology presented can be adapted to explore emerging technologies in other scientific domains.It allows for tailored assessment criteria based on specific contexts and objectives,enabling more precise analysis and decision-making in various fields.Originality/value:This study offers a comprehensive framework for identifying emerging technologies in nanomedicine,combining theoretical insights and practical applications.Its potential for adaptation across scientific disciplines enhances its value for future research and decision-making in technology discovery.展开更多
Background Reduction of the particle size of corn increases energy digestibility and concentrations of digestible and metabolizable energy.Pelleting may also reduce particle size of grain,but it is not known if there ...Background Reduction of the particle size of corn increases energy digestibility and concentrations of digestible and metabolizable energy.Pelleting may also reduce particle size of grain,but it is not known if there are interactions between particle size reduction and pelleting.The objective of this experiment was to test the hypothesis that particle size reduction and pelleting,separately or in combination,increase N balance,apparent total tract digestibility(ATTD)of fiber and fat,and net energy(NE)in corn-soybean meal diets fed to group-housed pigs.Methods Six corn-soybean meal-based diets were used in a 3×2 factorial design with 3 particle sizes of corn(i.e.,700,500,or 300μm)and 2 diet forms(i.e.,meal or pelleted).Pigs were allowed ad libitum access to feed and water.Twenty-four castrated male pigs(initial weight:29.52 kg;standard diviation:1.40)were allotted to the 6 diets using a 6×6 Latin square design with 6 calorimeter chambers(i.e.,4 pigs/chamber)and 6 periods.Oxygen consumption and CO_(2)and CH_(4)productions were measured during fed and fasting states and fecal and urine samples were collected.Results Regardless of particle size of corn,the ATTD of gross energy(GE),N,and acid-hydrolyzed ether extract(AEE),and the concentration of NE were greater(P<0.05)in pelleted diets than in meal diets.Regardless of diet form,the ATTD of GE,N,and AEE,and the concentration of NE were increased(linear;P<0.05)by reducing the particle size of corn,but the increase was greater in meal diets than in pelleted diets(interaction;P<0.05).Conclusions Both pelleting and reduction of corn particle size increased nutrient digestibility and NE,but increases were greater in meal diets than in pelleted diets.展开更多
This paper discusses the important role of science and technology commissioners in the high-quality development of hundreds of counties,thousands of towns,and myriads of villages in the context of rural revitalization...This paper discusses the important role of science and technology commissioners in the high-quality development of hundreds of counties,thousands of towns,and myriads of villages in the context of rural revitalization,including building bridges,accelerating the transformation of achievements,promoting the value-added of the whole agricultural industry chain,and promoting the rapid development of rural industrial economy.It also discusses the working achievements of science and technology commissioners,in order to promote further development of rural revitalization in Guangdong Province.展开更多
Proteomics is a new technology that has been widely applied in the field of life and health science.It effectively addresses issues related to the impact of dietary structure on organs,tissues,and cells,as well as the...Proteomics is a new technology that has been widely applied in the field of life and health science.It effectively addresses issues related to the impact of dietary structure on organs,tissues,and cells,as well as the changes in proteins in various organs,tissues,and cells under disease conditions.The differential proteins identified through proteomics can serve as disease biomarkers and target proteins affecting health and can be used for disease diagnosis and health regulation.In this paper,the application of proteomics in the field of infl ammation in recent years was summarized,especially in the therapeutic target and mechanism of action,which opens up a new way for more effective prevention,diagnosis,and treatment of inflammation,and provides medical protection for human life and health.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.71974167).
文摘Purpose:The disseminating of academic knowledge to nonacademic audiences partly relies on the transition of subsequent citing papers.This study aims to investigate direct and indirect impact on technology and policy originating from transformative research based on ego citation network.Design/methodology/approach:Key Nobel Prize-winning publications(NPs)in fields of gene engineering and astrophysics are regarded as a proxy for transformative research.In this contribution,we introduce a network-structural indicator of citing patents to measure technological impact of a target article and use policy citations as a preliminary tool for policy impact.Findings:The results show that the impact on technology and policy of NPs are higher than that of their subsequent citation generations in gene engineering but not in astrophysics.Research limitations:The selection of Nobel Prizes is not balanced and the database used in this study,Dimensions,suffers from incompleteness and inaccuracy of citation links.Practical implications:Our findings provide useful clues to better understand the characteristics of transformative research in technological and policy impact.Originality/value:This study proposes a new framework to explore the direct and indirect impact on technology and policy originating from transformative research.
文摘The rapid development of communication technology and computer networks has brought a lot of convenience to production and life,but it also increases the security problem.Information security has become one of the severe challenges faced by people in the digital age.Currently,the security problems facing the field of communication technology and computer networks in China mainly include the evolution of offensive technology,the risk of large-scale data transmission,the potential vulnerabilities introduced by emerging technology,and the dilemma of user identity verification.This paper analyzes the frontier challenges of communication technology and computer network security,and puts forward corresponding solutions,hoping to provide ideas for coping with the security challenges of communication technology and computer networks.
基金the Collaborative Innovation Center of Mine Intelligent Equipment and Technology,Anhui University of Science&Technology(CICJMITE202203)National Key R&D Program of China(2018YFC0604503)Anhui Province Postdoctoral Research Fund Funding Project(2019B350).
文摘The problem of mine water source has always been an important hidden danger in mine safety production.The water source under the mine working face may lead to geological disasters,such as mine collapse and water disaster.The research background of mine water source identification involves many fields such as mining production,environmental protection,resource utilization and technological progress.It is a comprehensive and interdisciplinary subject,which helps to improve the safety and sustainability of mine production.Therefore,timely and accurate identification and control of mine water source is very important to ensure mine production safety.Laser-Induced Fluorescence(LIF)technology,characterized by high sensitivity,specificity,and spatial resolution,overcomes the time-consuming nature of traditional chemical methods.In this experiment,sandstone water and old air water were collected from the Huainan mining area as original samples.Five types of mixed water samples were prepared by varying their proportions,in addition to the two original water samples,resulting in a total of seven different water samples for testing.Four preprocessing methods,namely,MinMaxScaler,StandardScaler,Standard Normal Variate(SNV)transformation,and Centering Transformation(CT),were applied to preprocess the original spectral data to reduce noise and interference.CT was determined as the optimal preprocessing method based on class discrimination,data distribution,and data range.To maintain the original data features while reducing the data dimension,including the original spectral data,five sets of data were subjected to Principal Component Analysis(PCA)and Linear Discriminant Analysis(LDA)dimensionality reduction.Through comparing the clustering effect and Fisher's ratio of the first three dimensions,PCA was identified as the optimal dimensionality reduction method.Finally,two neural network models,CT+PCA+CNN and CT+PCA+ResNet,were constructed by combining Convolutional Neural Networks(CNN)and Residual Neural Networks(ResNet),respectively.When selecting the neural network models,the training time,number of iterative parameters,accuracy,and cross-entropy loss function in the classification problem were compared to determine the model best suited for water source data.The results indicated that CT+PCA+ResNet was the optimal approach for water source identification in this study.
基金This work was funded by the Foundation of Hubei Hongshan Laboratory,China(2022hszd014)the National Natural Science Foundation of China(31771752).
文摘Chloroplast is a discrete,highly structured,and semi-autonomous cellular organelle.The small genome of chloroplast makes it an up-and-coming platform for synthetic biology.As a special means of synthetic biology,chloroplast genetic engineering shows excellent potential in reconstructing various sophisticated metabolic pathways within the plants for specific purposes,such as improving crop photosynthetic capacity,enhancing plant stress resistance,and synthesizing new drugs and vaccines.However,many plant species exhibit limited efficiency or inability in chloroplast genetic transformation.Hence,new transformation technologies and tools are being constantly developed.In order to further expand and facilitate the application of chloroplast genetic engineering,this review summarizes the new technologies in chloroplast genetic transformation in recent years and discusses the choice of appropriate synthetic biological elements for the construction of efficient chloroplast transformation vectors.
基金supported by the National Natural Science Foundation of China under Grant 62034002 and 62374026.
文摘A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.
基金supported by the National Natural Science Foundation of China(52027802)the Key Research and Development Program of Zhejiang Province(2020C05014,2020C01008,and 2021C01193).
文摘Sodium nitrate passivation has been developed as a new insulation technology for the production of FeSiAl soft magnetic composites (SMCs). In this work, the evolution of coating layers grown at different pH values is investigated involving analyses on their composition and microstructure. An insulation coating obtained using an acidic NaNO_(3) solution is found to contain Fe2O_(3), SiO_(2), Al2O_(3), and AlO(OH). The Fe2O_(3) transforms into Fe3O4 with weakened oxidizability of the NO_(3)– at an elevated pH, whereas an alkaline NaNO_(3) solution leads to the production of Al2O_(3), AlO(OH), and SiO_(2). Such growth is explained from both thermodynamic and kinetic perspectives and is correlated to the soft magnetic properties of the FeSiAl SMCs. Under tuned passivation conditions, optimal performance with an effective permeability of 97.2 and a core loss of 296.4 mW∙cm−3 is achieved at 50 kHz and 100 mT.
基金the financial support from the Scientific Research and Technology Development Project of China Energy Engineering Corporation Limited(CEEC-KJZX-04).
文摘Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"and"Underground Resource Utiliza-tion".Starting from the development of Compressed Air Energy Storage(CAES)technology,the site selection of CAES in depleted gas and oil reservoirs,the evolution mechanism of reservoir dynamic sealing,and the high-flow CAES and injection technology are summarized.It focuses on analyzing the characteristics,key equipment,reservoir construction,application scenarios and cost analysis of CAES projects,and sorting out the technical key points and existing difficulties.The devel-opment trend of CAES technology is proposed,and the future development path is scrutinized to provide reference for the research of CAES projects in depleted oil and gas reservoirs.
文摘Objective:To detect common chromosomal aneuploidy variations in embryos from couples undergoing assisted reproductive technology and preimplantation genetic screening and their possible associations with embryo quality.Methods:In this study,359 embryos from 62 couples were screened for chromosomes 13,21,18,X,and Y by fluorescence insitu hybridization.For biopsy of blastomere,a laser was used to remove a significantly smaller portion of the zona pellucida.One blastomere was gently biopsied by an aspiration pipette through the hole.After biopsy,the embryo was immediately returned to the embryo scope until transfer.Embryo integrity and blastocyst formation were assessed on day 5.Results:Totally,282 embryos from 62 couples were evaluated.The chromosomes were normal in 199(70.57%)embryos and abnormal in 83(29.43%)embryos.There was no significant association between the quality of embryos and numerical chromosomal abnormality(P=0.67).Conclusions:Embryo quality is not significantly correlated with its genetic status.Hence,the quality of embryos determined by morphological parameters is not an appropriate method for choosing embryos without these abnormalities.
文摘Recurrent spontaneous abortion (RSA) is a complex and heterogeneous disorder with multiple etiologies. Genetic factors are thought to play an important role in the etiology of RSA. With recent advances in genetic testing technologies, there has been an increasing interest in using these tools to diagnose the etiology of RSA. This review discusses the different types of genetic testing methods, such as karyotyping, chromosomal microarray analysis, next-generation sequencing, and their applications in the diagnosis of the etiology RSA. The use of genetic testing in the diagnosis of RSA has the potential to improve the accuracy of diagnosis and the understanding of the underlying mechanisms of the disorder, which could lead to better management and treatment of affected individuals.
基金Supported by Project of Shanxi Provincial Health Commission,No.2021144.
文摘BACKGROUND Erythrocyte alloantibodies are mainly produced after immune stimulation,such as blood transfusion,pregnancy,and transplantation,and are the leading causes of severe hemolytic transfusion reactions and difficulty in blood grouping and matching.Therefore,antibody screening is critical to prevent and improve red cell alloantibodies.Routine tube assay is the primary detection method of antibody screening.Recently,erythrocyte-magnetized technology(EMT)has been increasingly used in clinical practice.This study intends to probe the application and efficacy of the conventional tube and EMT in red blood cell alloantibody titration to provide a reference for clinical blood transfusion.AIM To investigate the application value of conventional tube and EMT in red blood cell alloantibody titration and enhance the safety of blood transfusion practice.METHODS A total of 1298 blood samples were harvested from blood donors at the Department of Blood Transfusion of our hospital from March 2021 to December 2022.A 5 mL blood sample was collected in tubing,which was then cut,and the whole blood was put into a test tube for centrifugation to separate the serum.Different red blood cell blood group antibody titers were simultaneously detected using the tube polybrene test,tube antiglobulin test(AGT),and EMT screening irregular antibody methods to determine the best test method.RESULTS Simultaneous detection was performed through the tube polybrene test,tube AGT and EMT screening irregular antibodies.It was discovered that the EMT screening irregular antibody method could detect all immunoglobulin G(IgG)and immunoglobulin M(IgM)irregular antibodies,and the results of manual tube AGT were satisfactory,but the operation time was lengthy,and the equipment had a large footprint.The EMT screening irregular antibody assay was also conducted to determine its activity against type O Rh(D)red blood cells,and the outcomes were satisfactory.Furthermore,compared to the conventional tube method,the EMT screening irregular antibody method was more cost-effective and had significantly higher detection efficiency.CONCLUSION With a higher detection rate,the EMT screening irregular antibody method can detect both IgG and IgM irregular antibodies faster and more effectively than the conventional tube method.
基金supported by the National Nature Science Foundation of China under grant No.42272350the Foundation of Shanxi Key Laboratory for Exploration and Exploitation of Geothermal Resources under grant No.SX202202.
文摘Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES technology advances,accommodating greater depth,higher temperature and multi-energy complementarity,new research challenges emerge.This paper comprehensively provides a systematic summary of the current research status of UTES.It categorized different types of UTES systems,analyzes the applicability of key technologies of UTES,and evaluate their economic and environmental benefits.Moreover,this paper identifies existing issues with UTES,such as injection blockage,wellbore scaling and corrosion,seepage and heat transfer in cracks,etc.It suggests deepening the research on blockage formation mechanism and plugging prevention technology,improving the study of anticorrosive materials and water treatment technology,and enhancing the investigation of reservoir fracture network characterization technology and seepage heat transfer.These recommendations serve as valuable references for promoting the high-quality development of UTES.
文摘As a basic technology at physical layer of mobile communications,non-orthogonal multiple access has been attracting wide attention across the academia and the industry.During the standardization of the fifth-generation(5G)of mobile communications,3GPP conducted preliminary study on non-orthogonal multiple access without reaching the consensus to standardize the technology.
基金Supported by Research and Development Funding for Medical and Health Institutions,No.2021YL007.
文摘BACKGROUND Infectious diseases are still one of the greatest threats to human health,and the etiology of 20%of cases of clinical fever is unknown;therefore,rapid identification of pathogens is highly important.Traditional culture methods are only able to detect a limited number of pathogens and are time-consuming;serologic detection has window periods,false-positive and false-negative problems;and nucleic acid molecular detection methods can detect several known pathogens only once.Three-generation nanopore sequencing technology provides new options for identifying pathogens.CASE SUMMARY Case 1:The patient was admitted to the hospital with abdominal pain for three days and cessation of defecation for five days,accompanied by cough and sputum.Nanopore sequencing of the drainage fluid revealed the presence of orallike bacteria,leading to a clinical diagnosis of bronchopleural fistula.Cefoperazone sodium sulbactam treatment was effective.Case 2:The patient was admitted to the hospital with fever and headache,and CT revealed lung inflammation.Antibiotic treatment for Streptococcus pneumoniae,identified through nanopore sequencing of cerebrospinal fluid,was effective.Case 3:The patient was admitted to our hospital with intermittent fever and an enlarged neck mass that had persisted for more than six months.Despite antibacterial treatment,her symptoms worsened.The nanopore sequencing results indicate that voriconazole treatment is effective for Aspergillus brookii.The patient was diagnosed with mixed cell type classical Hodgkin's lymphoma with infection.CONCLUSION Three-generation nanopore sequencing technology allows for rapid and accurate detection of pathogens in human infectious diseases.
基金the support of the Center for Cultural Studies on Science and Technology in China at Technische Universitat Berlin。
文摘Pre-modern Chinese crafts,such as iron smelting,cookery,medicine,and the production of vehicles,bows,and arrows indicate the traditional Chinese view of technology as being organic,holistic,and comprehensive.This view of technology is guided by the concept of he(和)and employs the means and methods of he,thus achieving the purport of he.In Chinese,the character he(和)possesses positive connotations.It originated from the meaning of"to season;to add flavoring to"(调和)and that of flavors being"perfectly harmonious"(和美).From this sensory experience,he gradually extended to the abstract levels of materiality,humanity,sociality,"order"(wei位),and "power,situation,force"(shi势).Finally,he was elevated to the supreme level of"qi of great harmony"(taihe zhi qi太和之气),which is comparable to the concept of dao(道).The philosophy of he has exerted wide impact on such areas as technology,art,national character,cultural psychology,and behavior patterns,and has become an integral part of China's inherent culture.The paradoxes and deviations of he hold their own profound philosophical implications that merit further exploration.As humanity confronts significant challenges,such as how we can coexist with others,with technology,and with nature,the ancient Eastern wisdom embodied in he continues to possess practical characteristics and value.
基金supported by the National Natural Science Foundation of China(Project No.22342011).
文摘Purpose:Nanomedicine has significant potential to revolutionize biomedicine and healthcare through innovations in diagnostics,therapeutics,and regenerative medicine.This study aims to develop a novel framework that integrates advanced natural language processing,noise-free topic modeling,and multidimensional bibliometrics to systematically identify emerging nanomedicine technology topics from scientific literature.Design/methodology/approach:The framework involves collecting full-text articles from PubMed Central and nanomedicine-related metrics from the Web of Science for the period 2013-2023.A fine-tuned BERT model is employed to extract key informative sentences.Noiseless Latent Dirichlet Allocation(NLDA)is applied to model interpretable topics from the cleaned corpus.Additionally,we develop and apply metrics for novelty,innovation,growth,impact,and intensity to quantify the emergence of novel technological topics.Findings:By applying this methodology to nanomedical publications,we identify an increasing emphasis on research aligned with global health priorities,particularly inflammation and biomaterial interactions in disease research.This methodology provides deeper insights through full-text analysis and leading to a more robust discovery of emerging technologies.Research limitations:One limitation of this study is its reliance on the existing scientific literature,which may introduce publication biases and language constraints.Additionally,manual annotation of the dataset,while thorough,is subject to subjectivity and can be time-consuming.Future research could address these limitations by incorporating more diverse data sources,and automating the annotation process.Practical implications:The methodology presented can be adapted to explore emerging technologies in other scientific domains.It allows for tailored assessment criteria based on specific contexts and objectives,enabling more precise analysis and decision-making in various fields.Originality/value:This study offers a comprehensive framework for identifying emerging technologies in nanomedicine,combining theoretical insights and practical applications.Its potential for adaptation across scientific disciplines enhances its value for future research and decision-making in technology discovery.
基金The financial support from the National Pork Board,Des Moines,IA,USA,is greatly appreciated。
文摘Background Reduction of the particle size of corn increases energy digestibility and concentrations of digestible and metabolizable energy.Pelleting may also reduce particle size of grain,but it is not known if there are interactions between particle size reduction and pelleting.The objective of this experiment was to test the hypothesis that particle size reduction and pelleting,separately or in combination,increase N balance,apparent total tract digestibility(ATTD)of fiber and fat,and net energy(NE)in corn-soybean meal diets fed to group-housed pigs.Methods Six corn-soybean meal-based diets were used in a 3×2 factorial design with 3 particle sizes of corn(i.e.,700,500,or 300μm)and 2 diet forms(i.e.,meal or pelleted).Pigs were allowed ad libitum access to feed and water.Twenty-four castrated male pigs(initial weight:29.52 kg;standard diviation:1.40)were allotted to the 6 diets using a 6×6 Latin square design with 6 calorimeter chambers(i.e.,4 pigs/chamber)and 6 periods.Oxygen consumption and CO_(2)and CH_(4)productions were measured during fed and fasting states and fecal and urine samples were collected.Results Regardless of particle size of corn,the ATTD of gross energy(GE),N,and acid-hydrolyzed ether extract(AEE),and the concentration of NE were greater(P<0.05)in pelleted diets than in meal diets.Regardless of diet form,the ATTD of GE,N,and AEE,and the concentration of NE were increased(linear;P<0.05)by reducing the particle size of corn,but the increase was greater in meal diets than in pelleted diets(interaction;P<0.05).Conclusions Both pelleting and reduction of corn particle size increased nutrient digestibility and NE,but increases were greater in meal diets than in pelleted diets.
文摘This paper discusses the important role of science and technology commissioners in the high-quality development of hundreds of counties,thousands of towns,and myriads of villages in the context of rural revitalization,including building bridges,accelerating the transformation of achievements,promoting the value-added of the whole agricultural industry chain,and promoting the rapid development of rural industrial economy.It also discusses the working achievements of science and technology commissioners,in order to promote further development of rural revitalization in Guangdong Province.
基金funded by National Key R&D Program of China(2022YFF1100300).
文摘Proteomics is a new technology that has been widely applied in the field of life and health science.It effectively addresses issues related to the impact of dietary structure on organs,tissues,and cells,as well as the changes in proteins in various organs,tissues,and cells under disease conditions.The differential proteins identified through proteomics can serve as disease biomarkers and target proteins affecting health and can be used for disease diagnosis and health regulation.In this paper,the application of proteomics in the field of infl ammation in recent years was summarized,especially in the therapeutic target and mechanism of action,which opens up a new way for more effective prevention,diagnosis,and treatment of inflammation,and provides medical protection for human life and health.