期刊文献+
共找到28,246篇文章
< 1 2 250 >
每页显示 20 50 100
Distributions and risk assessment of heavy metals in solid waste in lead-zinc mining areas and across the soil, water body, sediment and agricultural product ecosystem in their surrounding areas
1
作者 Zhi-qiang Wu Hai-ying Li +3 位作者 Liu-yan Lu Guo-jun Liang Ting-ting Wu Jiang-xia Zhu 《China Geology》 2025年第1期92-106,共15页
To identify the root causes of heavy metal contamination in soils as well as prevent and control such contamination from its sources,this study explored the accumulation patterns and ecological risks of heavy metals l... To identify the root causes of heavy metal contamination in soils as well as prevent and control such contamination from its sources,this study explored the accumulation patterns and ecological risks of heavy metals like Cd and Pb in solid waste in mining areas and across the water body,sediment,soil and agricultural product ecosystem surrounding the mining areas.Focusing on the residual solid waste samples in lead-zinc deposits in a certain area of Guizhou Province,along with samples of topsoils,irrigation water,river sediments,and crops from surrounding areas.This study analyzed the distributions of eight heavy metals,i.e.,Cd,As,Cr,Hg,Pb,Zn,Cu,and Ni,in the samples through field surveys and sample tests.Furthermore,this study assessed the contamination levels and ecological risks of heavy metals in soils,sediments,and agricultural products using methods such as the single-factor index,Nemerow composite index,and potential ecological risk assessment.The results indicate that heavy metals in the solid waste samples all exhibited concentrations exceeding their risk screening values,with 60%greater than their risk intervention values.The soils and sediments demonstrate slight and moderate comprehensive ecological risks of heavy metals.The single-factor potential ecological risks of heavy metals in both the soil and sediment samples decreased in the order of Hg,Cd,Pb,As,Cu,Zn,Cr,and Ni,suggesting the same sources of heavy metals in the soils and sediments.Most of the agricultural product samples exhibited over-limit concentrations of heavy metals dominated by Cd,Pb,Ni,and Cr,excluding Hg and As.The agricultural product assessment using the Nemerow composite index reveals that 35%of the agricultural product samples reached the heavy metal contamination level,implying that the agricultural products from farmland around the solid waste dumps have been contaminated with heavy metals.The eight heavy metals in the soil,sediment,and agricultural product samples manifested high coefficients of variation(CVs),indicating pronounced spatial variability.This suggests that their concentrations in soils,sediments,and agricultural products are significantly influenced by human mining activities.Additionally,the agricultural products exhibit strong transport and accumulation capacities for Cd,Cu,and Zn. 展开更多
关键词 Lead-zinc mining area Solid waste soil water body SEDIMENT Agricultural product Nemerow composite index Cd Pb Ni Cr elements Heavy metal contamination Ecological risk assessment Coefficients of variation(CVs) Environmental restoration engineering
下载PDF
Relationship between drought and soil erosion based on the normalized differential water index(NDWI)and revised universal soil loss equation(RUSLE)model
2
作者 Muhammad RENDANA Wan Mohd Razi IDRIS +3 位作者 Febrinasti ALIA Supli Effendi RAHIM Muhammad YAMIN Muhammad IZZUDIN 《Regional Sustainability》 2024年第4期133-144,共12页
The Langat River Basin in Malaysia is vulnerable to soil erosion risks because of its exposure to intensive land use activities and its topography,which primarily consists of steep slopes and mountainous areas.Further... The Langat River Basin in Malaysia is vulnerable to soil erosion risks because of its exposure to intensive land use activities and its topography,which primarily consists of steep slopes and mountainous areas.Furthermore,climate change frequently exposes this basin to drought,which negatively affects soil and water conservation.However,recent studies have rarely shown how soil reacts to drought,such as soil erosion.Therefore,the purpose of this study is to evaluate the relationship between drought and soil erosion in the Langat River Basin.We analyzed drought indices using Landsat 8 satellite images in November 2021,and created the normalized differential water index(NDWI)via Landsat 8 data to produce a drought map.We used the revised universal soil loss equation(RUSLE)model to predict soil erosion.We verified an association between the NDWI and soil erosion data using a correlation analysis.The results revealed that the southern and northern regions of the study area experienced drought events.We predicted an average annual soil erosion of approximately 58.11 t/(hm^(2)·a).Analysis of the association between the NDWI and soil erosion revealed a strong positive correlation,with a Pearson correlation coefficient of 0.86.We assumed that the slope length and steepness factor was the primary contributor to soil erosion in the study area.As a result,these findings can help authorities plan effective measures to reduce the impacts of drought and soil erosion in the future. 展开更多
关键词 droughT soil erosion Normalized differential water index(NDWI) Revised universal soil loss equation(RUSLE) Langat River Basin
下载PDF
Plastic mulch increases dryland wheat yield and water-use productivity,while straw mulch increases soil water storage 被引量:1
3
作者 Hubing Zhao Guanfei Liu +5 位作者 Yingxia Dou Huimin Yang Tao Wang Zhaohui Wang Sukhdev Malhi Adnan Anwar Khan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第9期3174-3185,共12页
Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil wa... Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil water storage,soil temperature and water-use productivity of PM and SM treatments were compared with no mulch(CK)treatment on dryland wheat over a period of eight seasons.Compared to the CK treatment,PM and SM treatments on average significantly increased grain yield by 12.6 and 10.5%,respectively.Compared to the CK treatment,SM treatment significantly decreased soil daily temperature by 0.57,0.60 and 0.48℃ for the whole seasons,growing periods and summer fallow periods,respectively.In contrast,compared to the CK treatment,PM treatment increased soil daily temperature by 0.44,0.51 and 0.27℃ for the whole seasons,growing periods and summer fallow periods,respectively.Lower soil temperature under SM allowed greater soil water storage than under PM.Soil water storage pre-seeding was 17%greater under the SM than under the PM treatment.Soil water storage post-harvest was similar for the PM and SM treatments,but evapotranspiration was 4.5%higher in the SM than in the PM treatment.Consequently,water-use productivity was 6.6%greater under PM than under the SM treatment.Therefore,PM treatment increased dryland wheat yield and water-use productivity,while straw mulch increased soil water storage. 展开更多
关键词 plastic mulch soil water storage straw mulch water-use productivity winter wheat
下载PDF
COMPARATIVE STUDY ON DROUGHT RESISTANCE OF LARIX OLGENSIS HENRY AND PINUS SYLVESTRIS VAR.MONGOLICA(Ⅰ)──THE INFLUENCE OF SOIL WATER CONTENT ON SEEDLINGS PLANTING IN FLOWERPOT 被引量:4
4
作者 冯玉龙 王文章 朱虹 《Journal of Northeast Forestry University》 SCIE CAS CSCD 1996年第2期1-5,共5页
Water potential (φ w .) and net photosynthetic rate (Pn) of Larix olgensis and Pinns.sylvestris var. mongolica deercased with the deerease of soil water content φw and Pn of L.olgensis changed hardly during the fi... Water potential (φ w .) and net photosynthetic rate (Pn) of Larix olgensis and Pinns.sylvestris var. mongolica deercased with the deerease of soil water content φw and Pn of L.olgensis changed hardly during the first 9 davs after stopping watering, then deereased sharply at the 10th dav Pn of P sylvestris var mongolica deereased slightly during the lirst 8 days, then deereased sharply at the 9th day Their respiration rate, chlorophyll content and their a/b ratio changed hardly. The tollowing 3 conclusions were obtained and discussed exhaustively . (Ⅰ) φ w can be used to direct watering as a sensitive index of judging whether L. olgensis and P.sylvestris var. mongolica lacking water (2 )The deereasc of Pn of L. olgensis and P. sylvestris var. mongolica when drought had nothing to do with chlorophyll. (3) P. sylvestris var. mongolica had morphological drought resistance . while L,olgensis had physiological drought resistance, and their drought resistance was discnssed comparatively first time. 展开更多
关键词 Larix olgensis Henry Pinus sylvestris var.mongolica soil water content water potential Net photosynthetic rate
下载PDF
A study of the soil water potential threshold values to trigger irrigation of ‘Shimizu Hakuto’ peach at pivotal fruit developmental stages
5
作者 Yusui Lou Yuepeng Han +4 位作者 Yubin Miao Hongquan Shang Zhongwei Lv Lei Wang Shiping Wang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期376-386,共11页
Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established man... Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established manly based on the effects of water deficits on final fruit quality.Few studies have focused on the real-time effects of water status on fruit and shoot growth.To establish soil water potential (ψ_(soil)) thresholds to trigger irrigation of peach at pivotal fruit developmental stages,photogrammetry,^(13)C labelling,and other techniques were used in this study to investigate real-time changes in stem diameter,fruit projected area,net leaf photosynthetic rate (P_(n)),and allocation of photoassimilates to fruit under soil water potential conditions ranging from saturation to stress in 6-year-old Shimizu hakuto’peach.Stem growth,fruit growth,and P_n exhibited gradually decreasing sensitivity to water deficits during fruit developmental stages I,II,and III.Stem diameter growth was significantly inhibited whenψ_(soil)dropped to-8.5,-7.6,and-5.4 k Pa,respectively.Fruit growth rate was low,reaching zero when theψ_(soil)was-9.0 to-23.1,-14.9 to-21.4,and-16.5 to-23.3 k Pa,respectively,and P_ndecreased significantly when theψ_(soil)reached-24.2,-22.7,and-20.4 kPa,respectively.In addition,more photoassimilates were allocated to fruit under moderateψ_(soil)conditions (-10.1 to-17.0 k Pa) than under otherψ_(soil)values.Our results revealed threeψ_(soil)thresholds,-10.0,-15.0,and-15.0 kPa,suitable for triggering irrigation during stages I,II,and III,respectively.These thresholds can be helpful for controlling excessive tree vigor,maintaining rapid fruit growth and leaf photosynthesis,and promoting the allocation of more photoassimilates to fruit. 展开更多
关键词 PEACH soil water potential Irrigation threshold Fruit expansion PHOTOSYNTHESIS
下载PDF
Effects of ecological soil and water conservation measures on soil erosion control in China’s typical regions:A meta-analysis
6
作者 LI Mingming XU Guangzhi +2 位作者 YANG Kaicheng DAI Fuqiang ZHOU Ping 《中国水土保持科学》 CSCD 北大核心 2024年第6期163-175,共13页
[Background]As one of the most serious environmental issues in the world,soil erosion causes water pollution,reservoir siltation,soil productivity decline,thus threatens agricultural systems and even affects global cl... [Background]As one of the most serious environmental issues in the world,soil erosion causes water pollution,reservoir siltation,soil productivity decline,thus threatens agricultural systems and even affects global climate.The benefits of ecological soil and water conservation measures(ESWCMs,such as micro basins tillage and contour tillage)are widely understood,including runoff and soil loss reducing to a certain extent when compared with traditional tillage.While few studies have focused on China’s different soil types and erosion characteristics.[Methods]We reviewed literature from Web of Science,Scopus,and China National Knowledge Infrastructure using terms like“Conservation practice”“Contour tillage”“Runoff”“Sediment”“Erosion”and“China”and retained literatures based on criteria such as natural or simulated precipitation,runoff or soil loss data,reported replications and statistics,recorded factors like location and slope,and at least two data pairs per group.Ultimately,49 literatures were selected to quantify the impacts on different ESWCMs and identify the slope and precipitation for the greatest runoff and sediment reduction by calculating the log response ratio(LRR).[Results]The three regions’soil and water conservation benefits varied due to the differences in climate,terrain,and soil properties:1)ESWCMs applied in the black soil region of Northeast China were the most effective in reducing runoff and soil loss(66.65%runoff and 75.83%sediment),followed by those applied in the purple soil region of Southwest China(39.98%runoff and 58.30%sediment)and loess soil region of Northwest China(16.36%runoff and 32.44%sediment).2)Micro basins tillage(MBT)(71.79%runoff and 87.03%sediment)no-tillage with mulch(NTM)(17.30%runoff and 32.51%sediment),collecting soil to form a ridge with no-till(CSNT)(55.78%runoff and 71.36%sediment reduction)were the most efficient soil and water conservation measures in controlling water erosion in the black soil of Northeast China,the loess soil region of Northwest China and the purple soil region of Southwest China,respectively.3)The slope gradients ranged from 0-3°,>3°-5°and>10°-15°(0-3°:97.09%;>3°-5°:74.62%;and>10°-15°:39.41%)caused the largest reduction of runoff in the black soil region of Northeast China,the loess soil region of Northwest China,and the purple soil region of Southwest China.Meanwhile,the effects of sediment reduction were the most obvious,ranging from 0-3°,>10°-15°,and>20°-25°(0-3°:89.32%;>10°-15°:75.94%;and>20°-25°:67.25%).4)The effect of ESWCMs under rainstorms was the most obvious in the black soil region of Northeast China.The effect on runoff reduction under light rain in the purple soil region of Southwest China was the most obvious,but it failed to pass the significance test in sediment reduction.[Conclusions]The results provided optimal conservation tillage measures for three regions,different slopes and different rainfalls,and provided data support for reducing regional soil and water loss in China. 展开更多
关键词 ecological soil and water conservation measures RUNOFF SEDIMENT water erosion region
下载PDF
Characteristics of water relations in seedling of Machilus yunnanensis and Cinnamomum camphora under soil drought condition 被引量:3
7
作者 TANG Tian-tian ZHAO Lin-sen 《Journal of Forestry Research》 SCIE CAS CSCD 2006年第4期281-284,共4页
The soil drought stress experiment in different durations (no watering within 3d, 6d, 9d, 11d individually) was conducted to study the drought-resistant capacity of one-year-old seedlings for the native tree species (... The soil drought stress experiment in different durations (no watering within 3d, 6d, 9d, 11d individually) was conducted to study the drought-resistant capacity of one-year-old seedlings for the native tree species (Machilus yunnanensis) in Yunnan Province and the introduced tree species (Cinnamomum camphora). The leaf water potential, chlorophyll content, proline content and plasma membrane permeability for two species seedlings were measured in different soil drought conditions. The results showed that, on the 9th day of drought stress, the leaf water potential of two species decreased obviously, whereas the free proline content and plasma membrane permeability increased sharply. On the 11th day, the leaf water potential of C. camphora seedlings was lower than that of M. yunnanensis seedlings; the plasma membrane permeability in C. camphora seedling leaves increased much more than that in M. yunnanensis seedling leaves, which showed that the injury to the former by soil drought stress was more severe than that to the latter. The free proline content in M. yunnanensis seedling leaves continued to increase on the 11th day, but that in the C. camphora seedling leaves started to drop obviously, indicating that the reduction of osmotic regulation substance in C. camphora seedling leaves after the 11th day was unable to maintain the osmotic balance between the plasma system and its surroundings and the water loss occurred inevitably. Comprehensively, M. yunnanensis seedlings enhanced the drought-resistance in the course of soil drought stress by maintaining higher leaf water potential and by increasing osmotic regulation substance to promote cell plasma concentration and maintain membrane structure integrity so as to reduce water loss. The subordination function index evaluated with fuzzy mathematic theory also showed that the drought-resistant capacity of M. yunnanensis seedlings was stronger than that of C. camphora seedlings. 展开更多
关键词 soil drought water potential Plasma membrane permeability Machilus yunnanensis Cinnamomum camphora
下载PDF
Water retention behavior and shear strength of artificially cemented granite residual soil subjected to free drying
8
作者 Xinxin Dong Xiaohua Bao +2 位作者 Hongzhi Cui Changjie Xu Xiangsheng Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4697-4710,共14页
Artificially cemented soils have been widely used as filling materials in highway and railway construction.The shear strength evolution of filling materials upon moist variation can determine the stability of subgrade... Artificially cemented soils have been widely used as filling materials in highway and railway construction.The shear strength evolution of filling materials upon moist variation can determine the stability of subgrade and embankments.This study conducted water retention tests,MIP tests,and multi-stage triaxial shear tests on cement-treated granite residual soil(GRS)to determine its water retention curve(WRC)upon free drying,pore structure,and peak shear strength qf,respectively.The water retention behavior and shear strength evolution upon free drying were modeled based on the dual-porosity structure of cement-treated GRS and the effective stress principle,respectively.Results show that the drying-WRC is bimodal and higher cement dosage yields a more severe decrease in the water retention capacity within a specific suction range.For a given confining pressure,the peak shear strength qf increased with increasing cement dosage or suction value s.The peak shear strength qf also solely depends on the suction value in the peak stress state.In addition,the cement-treated GRS has a bimodal pore size distribution curve,and its macro-and micro-void ratios remain almost unchanged after free drying.The bimodal drying-WRC of the cement-treated GRS can be modeled by differentiating the water retention mechanisms in macro-and micro-pores.Moreover,using the macro-pore degree of saturation as the effective stress parameterχ=S_(rM),the q_(f)–p′_(f)relationship(where p′_(f)is the effective mean pressure at failure)under various suction and stress conditions can be unified,and the q_(f)–s relationships at various net confining pressuresσ_(3),net can be well reproduced.These findings can help design subgrade and embankments constructed by artificially cemented GRS and assess their safe operation upon climate change. 展开更多
关键词 Granite residual soil Cement treatment DUAL-POROSITY water retention behavior Unsaturated shear strength
下载PDF
Effects of gravel on the water absorption characteristics and hydraulic parameters of stony soil
9
作者 MA Yan WANG Youqi +2 位作者 MA Chengfeng YUAN Cheng BAI Yiru 《Journal of Arid Land》 SCIE CSCD 2024年第7期895-909,共15页
The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different... The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different gravel contents on the water absorption characteristics and hydraulic parameters of stony soil.The stony soil samples were collected from the eastern foothills of the Helan Mountains in April 2023 and used as the experimental materials to conduct a one-dimensional horizontal soil column absorption experiment.Six experimental groups with gravel contents of 0%,10%,20%,30%,40%,and 50%were established to determine the saturated hydraulic conductivity(K_(s)),saturated water content(θ_(s)),initial water content(θ_(i)),and retention water content(θ_(r)),and explore the changes in the wetting front depth and cumulative absorption volume during the absorption experiment.The Philip model was used to fit the soil absorption process and determine the soil water absorption rate.Then the length of the characteristic wetting front depth,shape coefficient,empirical parameter,inverse intake suction and soil water suction were derived from the van Genuchten model.Finally,the hydraulic parameters mentioned above were used to fit the soil water characteristic curves,unsaturated hydraulic conductivity(K_(θ))and specific water capacity(C(h)).The results showed that the wetting front depth and cumulative absorption volume of each treatment gradually decreased with increasing gravel content.Compared with control check treatment with gravel content of 0%,soil water absorption rates in the treatments with gravel contents of 10%,20%,30%,40%,and 50%decreased by 11.47%,17.97%,25.24%,29.83%,and 42.45%,respectively.As the gravel content increased,inverse intake suction gradually increased,and shape coefficient,K_(s),θ_(s),andθ_(r)gradually decreased.For the same soil water content,soil water suction and K_(θ)gradually decreased with increasing gravel content.At the same soil water suction,C(h)decreased with increasing gravel content,and the water use efficiency worsened.Overall,the water holding capacity,hydraulic conductivity,and water use efficiency of stony soil in the eastern foothills of the Helan Mountains decreased with increasing gravel content.This study could provide data support for improving soil water use efficiency in the eastern foothills of the Helan Mountains and other similar rocky mountainous areas. 展开更多
关键词 stony soil gravel content water absorption characteristics hydraulic parameters one-dimensional horizontal soil column absorption experiment van Genuchten model eastern foothills of Helan Mountains
下载PDF
Effect of Saline Water on Soil Acidity, Alkalinity and Nutrients Leaching in Sandy Loamy Soil in Rwamagana Bella Flower Farm, Rwanda
10
作者 Abel Mwubahaman Wali Umaru Garba +3 位作者 Hussein Bizimana Jean de Dieu Bazimenyera Eric Derrick Bugenimana Jean Nepomuscene Nsengiyumva 《Agricultural Sciences》 2024年第1期15-35,共21页
The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific consideration... The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific considerations and limitations. One way to decrease undesirable effects of sodic waters on the physical and chemical properties of soils is to apply organic and chemical amendments within the soil. This study aimed to assess the effectiveness of saline water on soil acidity, alkalinity and nutrients leaching in sandy loamy soil at Bella flower farm, in Rwamagana District, Rwanda. The water used was from the Muhazi Lake which is classified as Class I (Saline water quality). Column leaching experiments using treated soils were then conducted under saturated conditions. The soil under experimental was first analyzed for its textural classification, soil properties and is classified as sandy loamy soil. The t-test was taken at 1%, 5% and 10% levels of statistical significance compared to control soil. The results indicated that the application of saline water to soils caused an increase in some soil nutrients like increase of Phosphorus (P), Potassium (K<sup>+</sup>), Magnesium (Mg2<sup>+</sup>), Sulphur (S), CN ratio and Sodium (Na<sup>+</sup>) and decreased soil texture, physical and chemical properties and remained soil nutrients. Consequently, the intensive addition of saline water leachates to soil in PVC pipes led to decreased of soil EC through leaching and a raiser Soluble Sodium Percentage (SSP). The rate of saline water application affected the increase accumulation of SAR and Na% in the top soil layers. The study indicated that saline water is an inefficient amendment for sandy soil with saline water irrigation. The study recommends further studies with similar topic with saline water irrigation, as it accentuated the alkalinity levels. 展开更多
关键词 NUTRIENTS LEACHING Saline water soil Acidity soil Alkalinity
下载PDF
AHFO-based soil water content sensing technology considering soil-sensor thermal contact resistance
11
作者 Mengya Sun Peng Wu +6 位作者 Bin Shi Jin Liu Jie Liu Juncheng Yao Yipin Lu Yunqiang Wang Xiaoyan Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2715-2731,共17页
The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual applicatio... The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual application of AHFO technology to the water content measurement of in situ soil.However,all existing in situ applications of AHFO technology fail to consider the effect of soilesensor contact quality on water content measurements,limiting potential for the wider application of AHFO technology.To address this issue,the authors propose a method for determining the soilesensor thermal contact resistance based on the principle of an infinite cylindrical heat source.This is then used to establish an AHFO water content measurement technology that considers the thermal contact resistance.The reliability and validity of the new measurement technology are explored through a laboratory test and a field case study,and the spatial-temporal evolution of the soil water content in the case is revealed.The results demonstrate that method for determining the soilesensor thermal contact resistance is highly effective and applicable to all types of soils.This method requires only the moisture content,dry density,and thermal response of the in situ soil to be obtained.In the field case,the measurement error of soil water content between the AHFO method,which takes into account the thermal contact resistance,and the neutron scattering method is only 0.011.The water content of in situ soil exhibits a seasonal variation,with an increase in spring and autumn and a decrease in summer and winter.Furthermore,the response of shallow soils to precipitation and evaporation is significant.These findings contribute to the enhancement of the accuracy of the AHFO technology in the measurement of the water content of in situ soils,thereby facilitating the dissemination and utilization of this technology. 展开更多
关键词 soil water content Actively heated fiber-optic(AHFO) technology soilesensor thermal contact resistance RELIABILITY In situ application
下载PDF
Estimation and mapping of water erosion and soil loss:Application of Gavrilovic erosion potential model(EPM)using GIS and remote sensing in the Assif el mal Watershed,Western high Atlas
12
作者 Kabili Salma Algouti Ahmed +1 位作者 Algouti Abdellah Ezzahzi Salma 《China Geology》 CAS CSCD 2024年第4期672-685,共14页
Water erosion is a serious problem that leads to soil degradation,loss,and the destruction of structures.Assessing the risk of erosion and determining the affected areas has become crucial in order to understand the m... Water erosion is a serious problem that leads to soil degradation,loss,and the destruction of structures.Assessing the risk of erosion and determining the affected areas has become crucial in order to understand the main factors influencing its evolution and to minimize its impacts.This study focuses on evaluating the risk of erosion in the Assif el mal watershed,which is located in the High Atlas Mountains.The Erosion Potential Model(EPM)is used to estimate soil losses depending on various parameters such as lithology,hydrology,topography,and morphometry.Geographic information systems and remote sensing techniques are employed to map areas with high erosive potential and their relationship with the distribution of factors involved.Different digital elevation models are also used in this study to highlight the impact of data quality on the accuracy of the results.The findings reveal that approximately 59%of the total area in the Assif el mal basin has low to very low potential for soil losses,while 22%is moderately affected and 19.9%is at high to very high risk.It is therefore crucial to implement soil conservation measures to mitigate and prevent erosion risks. 展开更多
关键词 water erosion soil degradation Risk Assif el mal watershed EPM GIS and remote sensing Map Morocco Digital elevations models
下载PDF
Review of wastewater treatment technologies,soil and water conservation measures in nuclear power plants,and inspirations to Fukushima accident
13
作者 WANG Chu NIU Jianzhi +2 位作者 LUN Xiaoxiu ZHANG Linus BERNDTSSON Ronny 《中国水土保持科学》 CSCD 北大核心 2024年第6期10-28,193-200,共27页
[Background]The previous studies suggest that radioactive elements like Cs and Sr may adversely affect marine ecosystems and the fishing industry.Traditional treatment systems for radioactive wastewater like the Advan... [Background]The previous studies suggest that radioactive elements like Cs and Sr may adversely affect marine ecosystems and the fishing industry.Traditional treatment systems for radioactive wastewater like the Advanced Liquid Processing System(ALPS)and Kurion have faced challenges in limiting concentration and achieving safety criteria.Studies suggest potential long-term impacts on benthic organisms and seafood networks due to radioactive elements like Cs and Sr from the discharged radioactive wastewater,which may hinder post-disaster recovery and provoke economic losses in the fishing industry both domestically and internationally.A series of studies indicate that there are issues of Cs and Sr pollution migration in soil and water conservation in Fukushima.[Methods]To provide feasible solutions,the main article includes five nuclear wastewater treatment technologies,and soil and water conservation measures for different media(water and soil)were evaluated through reviewing the previous fifteen years'articles.To provide feasible solutions,the main articles,the phytoextraction technologies in Cs and Sr treatment within different land use areas were wildly analyzed(Camellia japonica,Arabidopsis halleri and other local species).[Results]1)A 99.9%removal rate for Cs^(+)and 99.5%for Sr^(2+)was achieved by the KFe[Fe(CN)_(6)]and BaSO_(4)co-precipitation method.2)For membrane filtration,Sr^(2+)and Cs^(+)were removed using metal-organic framework(MOF/graphene oxide)and ion exchange techniques using inorganic materials like titanosilicates.The absorption efficiency of membrane filtration for Sr^(2+)and Cs^(+)was at least 92%and 94%,respectively.The study analyzed soil and water conservation technologies in different land uses,river basins and catchments.3)The underground water treatment mainly were completed via the membrance technologies like reverse osmosis and Permeable Reactive Barriers(PRB)technologies.The ^(90) Sr concentration decreased 77%-91%compared to the initial concentration by PRB technology.These diverse methods offered effective strategies for radioactive wastewater treatment,especially the co-precipitation method may be feasible remediation measures to ensure ecological safety surrounding nuclear power utilizing areas.Soil and water conservation measures for soil pollution treatment mainly focused on the use of stabilizers to hinder the migration of Cs and Sr in the soil and the effects of wind erosion such as interpolyelectrolyte complexes.[Conclusions]We evaluated the pollution of Cs and Sr in the Fukushima nuclear radiation soil and water to provide solutions for the treatment of nuclear wastewater and to prevent radionuclide pollutants from migrating into the soil and water. 展开更多
关键词 Fukushima nuclear power accident nuclear wastewater treatment environmental strategy soil and water conservation technologies
下载PDF
Current Status and Challenges of the Water and Soil Conservation in Hotan County, Xinjiang
14
作者 Junhui WANG Lei ZHANG 《Meteorological and Environmental Research》 2024年第3期72-76,共5页
In order to thoroughly analyze the current status and challenges faced by the water and water conservation in Hotan County of Xinjiang,the use situation of water resources,the effectiveness and shortcomings of water a... In order to thoroughly analyze the current status and challenges faced by the water and water conservation in Hotan County of Xinjiang,the use situation of water resources,the effectiveness and shortcomings of water and soil conservation work in the region are reviewed.Hotan County has achieved several remarkable achievements in the soil and water conservation project,daily management and maintenance,and ecological restoration projects.Some measures,such as terrace construction,slope protection engineering,and the construction of windproof and sandwood belts,have also had a positive impact on improving the quality of surface water resources while effectively curbing soil erosion.But there are also lack of operating policy detailed rules and implementation plans,and planning and design of some water and soil conservation projects lack of integrity and systematicness,application and promotion of new technologies,and soil loss management and ecological recovery effect assessment lack of comprehensive assessment indicators and methods.It has caused some water and soil conservation works to fail to be effectively implemented.In this regard,countermeasures and suggestions are put forward,such as strengthening the planning and management of water and soil conservation,promoting the technology and measures of water and soil conservation,increasing investment and funding support,and strengthening publicity education and personnel training. 展开更多
关键词 Hotan County water and soil conservation STATUS CHALLENGE
下载PDF
Effects of Typical Soil and Stratification Thickness on Water Infiltration Characteristics in Central Ningxia
15
作者 Tianwen ZHANG Wei CHEN +4 位作者 Xiaoying CHEN Rongjun ZHI Lin CHEN Haibo ZHANG Wei LIANG 《Meteorological and Environmental Research》 2024年第4期58-65,共8页
In order to compare the influence of different soil types and stratification on water infiltration capacity,two main types of soil in the desert steppe,sierozem(S)and aeolian sandy soil(A),were selected,and infiltrati... In order to compare the influence of different soil types and stratification on water infiltration capacity,two main types of soil in the desert steppe,sierozem(S)and aeolian sandy soil(A),were selected,and infiltration simulation tests were conducted on homogeneous soil and layered soil(layer thickness 5,10,and 20 cm),respectively.The results show that during the whole experiment,there was a small difference between S5A95(aeolian sandy soil 95 cm thick was covered with sierozem 5 cm thick)and S10A90(aeolian sandy soil 90 cm thick was covered with sierozem 10 cm thick)in the wetting front process,infiltration rate and cumulative infiltration,but there was a significant difference between S5A95 and S20A80(aeolian sandy soil 80 cm thick was covered with sierozem 20 cm thick).In the initial infiltration stage,there was no significant difference between A5S95(sierozem 95 cm thick was covered with aeolian sandy soil 5 cm thick)and A10S90(sierozem 90 cm thick was covered with aeolian sandy soil 10 cm thick).However,with the increase of infiltration time,the wetting front process,A5S95,A10S90 and A20S80 had significant differences in terms of wetting front process,infiltration rate and cumulative infiltration.The infiltration capacity of A was significantly higher than that of S.Combined with linear R 2 value and model parameters,the three infiltration models were comprehensively compared,and the fitting process and results of the general empirical model for the infiltration process of homogeneous soil and layered soil showed good results.Three models were used to simulate the water infiltration process of layered soil with different textures,and the order of the effect is as follows:general empirical model>Kostiakov model>Philip model.Soil type and layer thickness had a great influence on water infiltration process.When sierozem was covered with aeolian sandy soil 20 cm thick,the infiltration capacity was the best.As aeolian sandy soil was covered with sierozem 10 cm thick,the infiltration effect was the worst.Therefore,once coarse graying occurs on the surface of sierozem(the thickness of sand is more than 20 cm)or when the content of fine particles overlying aeolian sandy soil(the thickness of silt and clay soil is more than 10 cm)during ecological restoration is high,the soil hydrological characteristics will change significantly,which may lead to changes in vegetation types and even ecosystem structure. 展开更多
关键词 soil type Layer thickness water infiltration Desert steppe
下载PDF
Characteristics of In-Situ Soil Water Hysteresis Observed through Multiple-Years Monitoring
16
作者 Ippei Iiyama 《Journal of Geoscience and Environment Protection》 2024年第5期162-175,共14页
A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil wa... A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil water potential ψ to volumetric water content θ of the soil. However, an in-situ ψ − θ relation should show soil water hysteresis, though this fact is often neglected in analyses of field soil water regimes while long-term in-situ soil water hysteresis is not well characterized. This study aimed at probing and characterizing in-situ ψ − θ relations. The developments of large hysteresis in the in-situ ψ − θ relations were observed only a few times during the study period of 82 months. Any of the large hysteretic behaviors in the ψ − θ relations began with an unusually strong continual reduction in ψ. The completion of a hysteresis loop required a recorded maximum rainfall. Because the study field had very small chances to meet such strong rainfall events, it took multiple years to restore the fraction of soil water depleted by the unusually strong continual reduction in ψ. While wetting-drying cycles had occurred within a certain domain of ψ, hysteretic behaviors tended to be so small that the in-situ ψ − θ relation can be approximated as a single-valued function of θ(ψ). These observed patterns of the in-situ ψ − θ relations were characterized by kinds of difference in dθ/dψ between a drying process and a wetting process at a given ψ. Thus, more amounts of experimental facts about wetting SWRCs in parallel with drying SWRCs should be needed for correct modelling, analyzing, and predicting soil water regimes in fields. It is also necessary to increase our understandings about the long-term trends of occurrences of extreme weather conditions associated with possible change in climate. 展开更多
关键词 Atmospheric Conditions Field water Regimes Hysteretic Behaviors soil Moisture Conditions soil water Characteristic Curves Specific water Capacity Wetting-Drying Cycles
下载PDF
Response of plant physiological parameters to soil water availability during prolonged drought is affected by soil texture
17
作者 HUANG Laiming ZHAO Wen SHAO Ming'an 《Journal of Arid Land》 SCIE CSCD 2021年第7期688-698,共11页
Soil water deficit is increasingly threatening the sustainable vegetation restoration and ecological construction on the Loess Plateau of China due to the climate warming and human activities.To determine the response... Soil water deficit is increasingly threatening the sustainable vegetation restoration and ecological construction on the Loess Plateau of China due to the climate warming and human activities.To determine the response thresholds of Amygdalus pedunculata(AP)and Salix psammophila(SP)to soil water availability under different textural soils,we measured the changes in net photosynthetic rate(Pn),stomatal conductance(Gs),intercellular CO2 concentration(Ci),leaf water potential(ψw),water use efficiency(WUE)and daily transpiration rate(Td)of the two plant species during soil water content(SWC)decreased from 100%field capacity(FC)to 20%FC in the sandy and loamy soils on the Loess Plateau in the growing season from June to August in 2018.Results showed that Pn,Gs,WUE and Td of AP and SP remained relatively constant at the beginning of soil water deficit but decreased rapidly as plant available soil water content(PASWC)fell below the threshold values in both the sandy and loamy soils.The PASWC thresholds corresponding to Pn,Gs and Ci of AP in the loamy soil(0.61,0.62 and 0.70,respectively)were lower than those in the sandy soil(0.70,0.63 and 0.75,respectively),whereas the PASWC thresholds corresponding to Pn,Gs and Ci of SP in the loamy soil(0.63,0.68 and 0.78,respectively)were higher than those in the sandy soil(0.58,0.62 and 0.66,respectively).In addition,the PASWC thresholds in relation to Td and WUE of AP(0.60 and 0.58,respectively)and SP(0.62 and 0.60,respectively)in the loamy soil were higher than the corresponding PASWC thresholds of AP(0.58 and 0.52,respectively)and SP(0.55 and 0.56,respectively)in the sandy soil.Furthermore,the PASWC thresholds for the instantaneous gas exchange parameters(e.g.,Pn and Gs)at the transient scale were higher than the thresholds for the parameters(e.g.,Td)at the daily scale.Our study demonstrates that different plant species and/or different physiological parameters exhibit different thresholds of PASWC and that the thresholds are affected by soil texture.The result can provide guidance for the rational allocation and sustainable management of reforestation species under different soil conditions in the loess regions. 展开更多
关键词 plant available soil water content drought stress soil water deficit sustainable vegetation restoration sandy soil loamy soil Loess Plateau
下载PDF
Study on the Monitoring Malfunction of Water Pollution during Drought or Flood Period and Low-carbon and High-value Methodology--A Case Study of the Correlation Test of Water,Soil and Gas Pollution in Xiangxiang County
18
作者 LI Jin-song LI Lin-jie 《Meteorological and Environmental Research》 CAS 2011年第8期67-73,共7页
Based on the low-carbon and high-value methodology of chemical ecology and chemical informatics,combining theory and methods,taking saving,environmental protection,low carbon,high production,high value and circulation... Based on the low-carbon and high-value methodology of chemical ecology and chemical informatics,combining theory and methods,taking saving,environmental protection,low carbon,high production,high value and circulation as values and aims,the relationship between human and land as a basis,ecosystem as a center,overall control as a goal and agricultural ecological engineering as a mean,environmental pollution detection,as one of bottlenecks for agricultural products and food security,should be solved firstly;through the field survey in dry years from 2009 to 2010 when drought and flood were frequent and the frequency of drought was higher than that of flood,plus the determination of surface water flow and water quantity in a small typical river basin,the correlation of local water,soil and gas in the county could be found,and the transfer of monitoring focus from water environment to atmospheric environment was possible and necessary.The study would promote the quantitative research on the correlation among water,soil and gas,and the results were in accordance with the conclusions of related studies. 展开更多
关键词 Pollution monitoring REPRESENTATIVE Accuracy Correlation among water soil and gas data Low-carbon and high-value methodology China
下载PDF
Effects of soil temperature and soil water content on soil respiration in three forest types in Changbai Mountain 被引量:9
19
作者 王淼 李秋荣 +1 位作者 肖冬梅 董百丽 《Journal of Forestry Research》 SCIE CAS CSCD 2004年第2期113-118,i002,共7页
Soil incubation experiments were conducted in lab to delineate the effect of soil temperature and soil water content on soil respirations in broad-leaved/Korean pine forest (mountain dark brown forest soil), dark coni... Soil incubation experiments were conducted in lab to delineate the effect of soil temperature and soil water content on soil respirations in broad-leaved/Korean pine forest (mountain dark brown forest soil), dark coniferous forest (mountain brown coniferous forest soil) and erman's birch forest (mountain soddy forest soil) in Changbai Mountain in September 2001. The soil water content was adjusted to five different levels (9%, 21%, 30%, and 43%) by adding certain amount of water into the soil cylinders, and the soil sample was incubated at 0, 5, 15, 25 and 35°C for 24 h. The results indicated that in broad-leaved/Korean pine forest the soil respiration rate was positively correlated to soil temperature from 0 to 35°C. Soil respiration rate increased with increase of soil water content within the limits of 21% to 37%, while it decreased with soil water content when water content was over the range. The result suggested the interactive effects of temperature and water content on soil respiration. There were significant differences in soil respiration among the various forest types. The soil respiration rate was highest in broad-leaved/Korean pine forest, middle in erman's birch forest and the lowest in dark coniferous forest. The optimal soil temperature and soil water content for soil respiration was 35°C and 37% in broad-leaved/Korean pine forest, 25°C and 21% in dark coniferous forest, and 35°C and 37% in erman's birch forest. Because the forests of broad-leaved/Korean pine, dark coniferous and erman's birch are distributed at different altitudes, the soil temperature had 4–5°C variation in different forest types during the same period. Thus, the soil respiration rates measured in brown pine mountain soil were lower than those in dark brown forest and those measured in mountain grass forest soil were higher than those in brown pine mountain soil. Key words Soil temperature - Soil water content - Soil respiration - The typical forest ecosystem in Changbai Mountain CLC number S7118.51 Document code A Foundation item: This study was supported by grant from the National Natural Science Foundation of China (No. 30271068), the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ-CX-SW-01-01B-12) and the grant from Advanced Programs of Institute of Applied Ecology Chinese Academy of Sciences.Biography: WANG Miao (1964-), male, associate professor in Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, P. R. China.Responsible editor: Song Funan 展开更多
关键词 soil temperature soil water content soil respiration The typical forest ecosystem in Changbai Mountain
下载PDF
Effect of Different Vegetation Types on Soil Erosion by Water 被引量:27
20
作者 张岩 刘宝元 +1 位作者 张清春 谢云 《Acta Botanica Sinica》 CSCD 2003年第10期1204-1209,共6页
The C factor in Universal Soil loss Equation reflecting the effect of vegetation on soil erosion by water is one of the important parameters for estimating soil erosion rate and selecting appropriate land use patterns... The C factor in Universal Soil loss Equation reflecting the effect of vegetation on soil erosion by water is one of the important parameters for estimating soil erosion rate and selecting appropriate land use patterns. In this study, the C factor for nine types of grassland and woodland was estimated from 195 plot-year observation data of six groups of soil erosion experiments on Loess Plateau. The result indicates that the effects of woodland and grassland on soil erosion keep approximately uniform after two or three years' growth. The estimated woodland C factor ranges from 0.004 to 0.164, and the grassland C factor ranges from 0.071 to 0.377, showing that the effect of woodland and grassland on soil conservation is greatly better than that of cropland. The study results can be used to compare or estimate the soil loss from land with different vegetation cover, and are the useful references for land use pattern selection and the project of returning cropland to forest or grassland. 展开更多
关键词 soil erosion by water C factor WOODLAND GRASSLAND CROPLAND
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部