A siliconizing process to manufacture 6.5% Si steel sheet has been developed. Electric components, such as transformers and reactors are made easily from 6.5% Si steel sheet. However, improved workability is desirable...A siliconizing process to manufacture 6.5% Si steel sheet has been developed. Electric components, such as transformers and reactors are made easily from 6.5% Si steel sheet. However, improved workability is desirable to increase the applications. Therefore the improvement of workability of 6.5% Si steel sheet was investigated, and the results were obtained as follows: (a) workability of 6.5% Si steel sheet is deteriorated by grain boundary oxidization, (b) grain boundary oxidization can be restrained by the addition of C. Workability and magnetic properties of 6.5% Si steel sheet with C addition are discussed. Furthermore, it was found that the workability of high Si steel sheet was improved remarkably by varying the Si content gradient along the thickness without deterioration of high frequency magnetic properties. This newly developed magnetic gradient high Si steel sheet is also discussed.展开更多
Balance solubility products and enthalpy of for- mation for NbC0.75, NbC0.85, NbC0.88, NbC and NbN in oriented silicon steels were calculated and compared quali- tatively. Meanwhile, the mixing enthalpies of these fiv...Balance solubility products and enthalpy of for- mation for NbC0.75, NbC0.85, NbC0.88, NbC and NbN in oriented silicon steels were calculated and compared quali- tatively. Meanwhile, the mixing enthalpies of these five Nb compounds were calculated based on Miedema Model. The results show that the solubility products of Nb compounds in ferrite and austenite meet the following relationship, NbC0.75 〉 NbC0.85 〉 NbC0.88 〉 NbC 〉 NbN and NbN has the minimum enthalpy of formation. It indicates that NbN easily precipitate out, but it is more difficult for NbC0.75.展开更多
In this paper, we investigate the single event transient (SET) occurring in partially depleted silicon-on-insulator (PDSOI) metal-oxide-semiconductor (MOS) devices irradiated by pulsed laser beams. Transient sig...In this paper, we investigate the single event transient (SET) occurring in partially depleted silicon-on-insulator (PDSOI) metal-oxide-semiconductor (MOS) devices irradiated by pulsed laser beams. Transient signal characteristics of a 0.18-p.m single MOS device, such as SET pulse width, pulse maximum, and collected charge, are measured and an- alyzed at wafer level. We analyze in detail the influences of supply voltage and pulse energy on the SET characteristics of the device under test (DUT). The dependences of SET characteristics on drain-induced barrier lowering (DIBL) and the parasitic bipolar junction transistor (PBJT) are also discussed. These results provide a guide for radiation-hardened deep sub-micrometer PDSOI technology for space electronics applications.展开更多
The experimental results of the cryogenic temperature characteristics on 0.18-μm silicon-on-insulator(SOI) metaloxide-silicon(MOS) field-effect-transistors(FETs) were presented in detail. The current and capaci...The experimental results of the cryogenic temperature characteristics on 0.18-μm silicon-on-insulator(SOI) metaloxide-silicon(MOS) field-effect-transistors(FETs) were presented in detail. The current and capacitance characteristics for different operating conditions ranging from 300 K to 10 K were discussed. SOI MOSFETs at cryogenic temperature exhibit improved performance, as expected. Nevertheless, operation at cryogenic temperature also demonstrates abnormal behaviors, such as the impurity freeze-out and series resistance effects. In this paper, the critical parameters of the devices were extracted with a specific method from 300 K to 10 K. Accordingly, some temperature-dependent-parameter models were created to improve fitting precision at cryogenic temperature.展开更多
Several TAAFS (tetraalkylammonium hexafluorosilicates) with different cations were synthesized. Their thermal properties were studied showing that obtained complexes are stable enough to be suitable for electrochemi...Several TAAFS (tetraalkylammonium hexafluorosilicates) with different cations were synthesized. Their thermal properties were studied showing that obtained complexes are stable enough to be suitable for electrochemical deposition of silicon coatings under temperatures at least up to 200 ℃.展开更多
A nano-structured surface is formed on the pyramid structure of n-type silicon solar cells by size-controlled silver nano-particle assisted etching. Such a nano-structure creates a front average weighted reflectance o...A nano-structured surface is formed on the pyramid structure of n-type silicon solar cells by size-controlled silver nano-particle assisted etching. Such a nano-structure creates a front average weighted reflectance of less than 2.5% in the 300-1200nm range due to the broadband reflection suppression. The sodium hydroxide is used to obtain the low-area surface by post-etching the nano-structure, thus the severe carrier recombination associated with the nano-structured surface could be reduced. After emitter forming, screen printing and firing by means of the industrial fabrication protocol, an 18.3%-efficient nano-structured silicon solar cell with rear emitter is fabricated. The process of fabricating the solar cells matches well with industrial manufacture and shows promising prospects.展开更多
Nodulin 26-like intrinsic proteins(NIPs) are a family of channel-forming transmembrane proteins that function in the transport of water and other small molecules.Some NIPs can mediate silicon transport across plasma m...Nodulin 26-like intrinsic proteins(NIPs) are a family of channel-forming transmembrane proteins that function in the transport of water and other small molecules.Some NIPs can mediate silicon transport across plasma membranes and lead to silicon accumulation in plants,which is beneficial for the growth and development of plants.Cucumber is one of the most widely consumed vegetables;however,the functions of NIPs in this crop are still largely unknown.Here,we report the functional characteristics of Cs NIP2;2.It was found that Cs NIP2;2 is a tandem repeat of Cs NIP2;1,which had been demonstrated to be a silicon influx transporter gene.Cs NIP2;2 has a selectivity filter composed of cysteine,serine,glycine and arginine(CSGR),which is different from all previously characterized silicon influx transporters in higher plants at the second helix position.Xenopus laevis oocytes injected with Cs NIP2;2 c RNA demonstrated a higher uptake of silicon than the control,and the uptake remained unchanged under low temperature.Cs NIP2;2 was found to be expressed in the root,stem,lamina and petiole,and exogenous silicon treatment decreased its expression in the stem but not in other tissues.Transient expression of Cs NIP2;2-e GFP fusion sequence in onion epidermal cells showed that Cs NIP2;2 was localized to the cell nucleus,plasma membrane and an unknown structure inside the cell.The results suggest that Cs NIP2;2 is a silicon influx transporter in cucumber,and its subcellular localization and the selectivity filter are different from those of the previously characterized silicon influx transporters in other plants.These findings may be helpful for understanding the functions of NIPs in cucumber plants.展开更多
Horsetail (Equisetum arvense L.) is a perennial herb which creates during the life cycle spring and summer stems. The selected species and populations were monitored in the years 2009-2011 in three different natural l...Horsetail (Equisetum arvense L.) is a perennial herb which creates during the life cycle spring and summer stems. The selected species and populations were monitored in the years 2009-2011 in three different natural locations in Laborecká vrchovina (Slovakia). Samples were collected by destructive methods in all three locations. Silicon content was determined in dry biomass by AAS. Silicon content in plants ranged from 21.11 ± 3.24 g·kg-1 to 32.80 ± 8.03 g·kg-1. The highest content of silicon exhibited samples of the September collection. We found that the location and the year in terms of silicon content were not statistically significant. The main sources for statistical variability in the accumulation of silicon were during the collections.展开更多
In the framework of density functional theory (DFT), we have studied the electronic properties of alkene/alkyne- hydrosilylated silicon nanocrystals (Si NCs) in the size range from 0.8 nm to 1.6 nm. Among the alke...In the framework of density functional theory (DFT), we have studied the electronic properties of alkene/alkyne- hydrosilylated silicon nanocrystals (Si NCs) in the size range from 0.8 nm to 1.6 nm. Among the alkenes with all kinds of functional groups considered in this work, only those containing -NH2 and -C4H3S lead to significant hydrosilylation- induced changes in the gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of an Si NC at the ground state. The quantum confinement effect is dominant for all of the alkene- hydrosilylated Si NCs at the ground state. At the excited state, the prevailing effect of surface chemistry only occurs at the smallest (0.8 nm) Si NCs hydrosilylated with alkenes containing -NH2 and -C4H3S. Although the alkyne hydrosilylation gives rise to a more significant surface chemistry effect than alkene hydrosilylation, the quantum confinement effect remains dominant for alkyne-hydrosilylated Si NCs at the ground state. However, at the excited state, the effect of surface chemistry induced by the hydrosilylation with conjugated alkynes is strong enough to prevail over that of quantum confinement.展开更多
The effect of NaCl with or without silicon on the growth and metabolism in rice seedlings cv. MTU1010 was studied. In these seedlings, the oxidative stress has been observed with NaCl treatments and the levels of prol...The effect of NaCl with or without silicon on the growth and metabolism in rice seedlings cv. MTU1010 was studied. In these seedlings, the oxidative stress has been observed with NaCl treatments and the levels of proline, H<sub>2</sub>O<sub>2</sub> and malondialdehyde contents were increased whereas catalase activity was decreased. NaCl exposure at 25 mM, 50 mM and 100 mM concentrations in the test seedlings resulted in an increase in both reducing and non-reducing sugar content. There was a decrease in starch contents and the activity of starch phosphorylase was increased. NaCl stress also affected the activities of different carbohydrate metabolizing enzymes. The activities of sucrose synthase and sucrose phosphate synthase were increased, while the activity of acid invertase was decreased. Joint application of silicon with NaCl showed significant alterations on all parameters tested under the purview of NaCl treatment alone leading to better growth and metabolism in rice seedlings. Thus the use of silicon enriched fertilizers may help to grow healthy rice plants in NaCl rich soil.展开更多
The metabolic activity of the fruits continues even after harvest,which results in the loss of bioactive compounds,a decrease in the quality of the fruits,softening and browning,among other negative effects.The use of...The metabolic activity of the fruits continues even after harvest,which results in the loss of bioactive compounds,a decrease in the quality of the fruits,softening and browning,among other negative effects.The use of certain elements such as silicon can improve postharvest quality,since it is involved in the metabolic,physiological and structural activity of plants,moreover can increase the quality of the fruits.In addition,nanotechnology has had a positive impact on crop yield,nutritional value,fruit quality and can improve antioxidant activity.For these reasons,the use of beneficial elements such as silicon in the form of nanoparticles can be a viable option to improve the characteristics of the fruits.In the present study was evaluated the application of potassium silicate(125,250 and 500 mg L^(−1))and SiO_(2) nanoparticles(125,250 and 500 mg L^(−1))during the development of the crop.The results showed that the application of silicon(potassium silicate and silicon nanoparticles)increased the content of total soluble solids(up to 15.6%higher than control),titratable acidity(up to 38.8%higher than control),vitamin C(up to 78.2%higher than control),phenols(up to 22%higher than control),flavonoids(up to 64.6%higher than control),and antioxidant activity in lipophilic compounds(up to 56.2%higher than control).This study suggests that the use of silicon can be a good option to increase the content of bioactive compounds in cucumber fruits when they are applied during the development of the crop.展开更多
A Nicolet-200SXV FT-IR spectrometer combined with an exciting light set-up has been applied to determine the shallow impurity concentration in detector-grade silicon. The detection sensitivity of boron concentration i...A Nicolet-200SXV FT-IR spectrometer combined with an exciting light set-up has been applied to determine the shallow impurity concentration in detector-grade silicon. The detection sensitivity of boron concentration is high up to 7.8 × 10-12. The calibration curve of boron concentration in high-purity silicon has been obtained, from which the experimental value of calibration factor of boron concentration in silicon is demonstrated to be 1.15 × 1013 cm-1.展开更多
We investigated the deformation behaviors of Zr_65Cu_17.5Ni_10Al_7.5 in superplastic forming in silicon mould via numerical modeling and experiments. The data needed for the constitutive formulation were obtained from...We investigated the deformation behaviors of Zr_65Cu_17.5Ni_10Al_7.5 in superplastic forming in silicon mould via numerical modeling and experiments. The data needed for the constitutive formulation were obtained from compressive tests to establish a material library for finite-element simulation using a DEFORM 3D software. A constant speed forming process of a micro gear was modeled where the loading force, feature size and amount of deformation in the micro gear in silicon mould were analyzed in detail for the optimal requirements of micro gear forming and the protection of silicon mould. Guided by the modeling parameters, an amorphous metal micro gear was successfully obtained by our home-made superplastic forming system with the optimized parameters (temperature of 683 K, top speed of 0.003 mm/s until the load force reaching limiting value at 1960 N, and a gradually decelerating process for holding the force to the end). Our work gives a good example for optimization of superplastic forming and fabrication of BMGs in microparts.展开更多
[Objectives]This study was conducted to investigate the control effects of silicon fertilizer on growth of kohlrabi(Brassica oleracea L.var.caulorapa DC.)and Plutella xylostella.[Methods]Yougui and Guishen were select...[Objectives]This study was conducted to investigate the control effects of silicon fertilizer on growth of kohlrabi(Brassica oleracea L.var.caulorapa DC.)and Plutella xylostella.[Methods]Yougui and Guishen were selected and sprayed onto kohlrabi for 1,2 and 3 times,forming difference treatments.[Results]Spraying the two kinds of silicon fertilizers for different times promoted the growth of leaf length,leaf width and leaf thickness of kohlrabi,improved chlorophyll contents in kohlrabi leaves and corm yield,and adversely affected P.xylostella.Furthermore,higher treatment times led to a more remarkably effect and higher harm to P.xylostella.[Conclusions]In production,spraying silicon fertilizer onto maize for 2-3 times could realize the purposes of improving kohlrabi yield and alleviating damage by P.xylostella.展开更多
The growth of silicon on Ag films via 40.68 MHz very-high-frequency (VHF) magnetron sputtering was investigated. The energy distribution and flux density of the ions on the substrate were also measured. The results ...The growth of silicon on Ag films via 40.68 MHz very-high-frequency (VHF) magnetron sputtering was investigated. The energy distribution and flux density of the ions on the substrate were also measured. The results showed that 40.68 MHz magnetron sputtering can produce ions with higher energy and lower flux density. The impact of these ions onto the grown surface promotes the growth of silicon, which is related to the crystalline nature and microstructure of the underlayer of the Ag films, and there is large particle growth of silicon on Ag films with a preferred orientation of (111), and two-dimensional growth of silicon on Ag films with a better face-centered cubic structure.展开更多
This study was carried out to investigate the effects of silicon (Si) 3.6 mM (as calcium silicate) under drought stress induced by polyethylene glycol “PEG” at 15% (MW 8000), in addition to the control treatment on ...This study was carried out to investigate the effects of silicon (Si) 3.6 mM (as calcium silicate) under drought stress induced by polyethylene glycol “PEG” at 15% (MW 8000), in addition to the control treatment on growth and some biochemical constituents of date palm cv. Barhee cultured in vitro. Drought stress (15% PEG) depressed the growth of shoot and decreased protein content and chlorophyll concentration. Addition of 3.6 mM Si could improve the growth of shoot and increase the protein content and leaf chlorophyll concentrations of stressed plants. The inclusion of Si to the PEG containing medium significantly increased the catalase (CAT) and superoxide dismutase (SOD) activity in regenerated shoot, compared to other treatments. As well as drought stress 15% PEG induced significant accumulation of shoots proline, which were decreased by added silicon. Moreover, the results were also supported by the observation that PEG stress-induced decrease the response percentage of root induction and root lengths was reversed by added silicon. Addition of Si obviously significantly increased the wax content in leaves, response percentage of root induction and root lengths of plantlets under drought stress. The results of this study indicate that the application of silicon improved growth attributes, effectively mitigate the adverse effect of drought, and increase tolerance of date palm plants for drought stress during the course of date palm tissue cultures.展开更多
This work involves an investigation of nanostructures, microelectronic properties and domain engineering of nanoparticles thin layers of Pb(Zn1/ 3Nb2/3)O3-PbTiO3 (PZN-PT) ferroelectric single crystals deposited on nan...This work involves an investigation of nanostructures, microelectronic properties and domain engineering of nanoparticles thin layers of Pb(Zn1/ 3Nb2/3)O3-PbTiO3 (PZN-PT) ferroelectric single crystals deposited on nanostructured silicon substrate. In this study, devices made from PZN-4.5PT nanoparticles thin films successfully deposited on silicon substrate have been studied and discussed. SEM images show the formation of local black circles and hexagonal shapes probably due to the nucleation of a new Si-gel component or phase induced by annealing. Micro Xray Fluorescence mapping shows that the high values of Si and B atoms (≅7 and 4 normalized unit respectively) can be explained by the fact that the substrate is p-type silicon. The most interesting result of optical measurements is the very good absorption for all the thin films in UV, Visible and NIR regions with values from 70% to 90% in UV, from 75% to 93% in Visible and NIR. Tauc plots present particularities (rarely encountered behavior) with different segments or absorption changes showing the presence of multiple band gaps coming from the heterogeneity of the thin films (nanowires, gel and nanoparticles). Their values are 1.9 and 2.8 eV for DKRN-Gel, 2.1 and 3.1 eV for DKRN-UD and 2.1 and 3.2 eV for DKRN-D) corresponding respectively to the band gap of nanowires and that of the gel while the last ones correspond to the undoped and doped nanoparticles (3.1 and 3.2 eV respectively).展开更多
Strained Si and its related materials, such as strained SiGe and strained silicon-carbon alloy (Si-C), are receiving tremendous interest due to their high carrier mobility. In this study we carry out a basic investiga...Strained Si and its related materials, such as strained SiGe and strained silicon-carbon alloy (Si-C), are receiving tremendous interest due to their high carrier mobility. In this study we carry out a basic investigation of the change in microstructure of ion-implanted Si-C solid solution caused by rapid thermal annealing, because it is very important to realize a field-effect transistor made of this new material. The microstructures of arsenic-ion-, boron-ion-, and silicon-ion-implanted Si0.99C0.01 specimens upon thermal annealing are observed using transmission electron microscopy, and it is revealed that the rate of solid-state crystallization of ion-implanted Si-C is slower than that of the ion-implanted Si.展开更多
Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and p...Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.展开更多
文摘A siliconizing process to manufacture 6.5% Si steel sheet has been developed. Electric components, such as transformers and reactors are made easily from 6.5% Si steel sheet. However, improved workability is desirable to increase the applications. Therefore the improvement of workability of 6.5% Si steel sheet was investigated, and the results were obtained as follows: (a) workability of 6.5% Si steel sheet is deteriorated by grain boundary oxidization, (b) grain boundary oxidization can be restrained by the addition of C. Workability and magnetic properties of 6.5% Si steel sheet with C addition are discussed. Furthermore, it was found that the workability of high Si steel sheet was improved remarkably by varying the Si content gradient along the thickness without deterioration of high frequency magnetic properties. This newly developed magnetic gradient high Si steel sheet is also discussed.
基金financially supported by the National Natural Science Foundation of China (Nos. 51274083 and 51074062)
文摘Balance solubility products and enthalpy of for- mation for NbC0.75, NbC0.85, NbC0.88, NbC and NbN in oriented silicon steels were calculated and compared quali- tatively. Meanwhile, the mixing enthalpies of these five Nb compounds were calculated based on Miedema Model. The results show that the solubility products of Nb compounds in ferrite and austenite meet the following relationship, NbC0.75 〉 NbC0.85 〉 NbC0.88 〉 NbC 〉 NbN and NbN has the minimum enthalpy of formation. It indicates that NbN easily precipitate out, but it is more difficult for NbC0.75.
文摘In this paper, we investigate the single event transient (SET) occurring in partially depleted silicon-on-insulator (PDSOI) metal-oxide-semiconductor (MOS) devices irradiated by pulsed laser beams. Transient signal characteristics of a 0.18-p.m single MOS device, such as SET pulse width, pulse maximum, and collected charge, are measured and an- alyzed at wafer level. We analyze in detail the influences of supply voltage and pulse energy on the SET characteristics of the device under test (DUT). The dependences of SET characteristics on drain-induced barrier lowering (DIBL) and the parasitic bipolar junction transistor (PBJT) are also discussed. These results provide a guide for radiation-hardened deep sub-micrometer PDSOI technology for space electronics applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61176095 and 61404169)the Youth Innovation Promotion Association of Chinese Academy of Sciences
文摘The experimental results of the cryogenic temperature characteristics on 0.18-μm silicon-on-insulator(SOI) metaloxide-silicon(MOS) field-effect-transistors(FETs) were presented in detail. The current and capacitance characteristics for different operating conditions ranging from 300 K to 10 K were discussed. SOI MOSFETs at cryogenic temperature exhibit improved performance, as expected. Nevertheless, operation at cryogenic temperature also demonstrates abnormal behaviors, such as the impurity freeze-out and series resistance effects. In this paper, the critical parameters of the devices were extracted with a specific method from 300 K to 10 K. Accordingly, some temperature-dependent-parameter models were created to improve fitting precision at cryogenic temperature.
文摘Several TAAFS (tetraalkylammonium hexafluorosilicates) with different cations were synthesized. Their thermal properties were studied showing that obtained complexes are stable enough to be suitable for electrochemical deposition of silicon coatings under temperatures at least up to 200 ℃.
基金Supported by the National Natural Science Foundation of China under Grant No 51532007the Major Projects of Zhejiang Province under Grant No 2013C01037the Foundation of State Key Lab of Silicon Materials
文摘A nano-structured surface is formed on the pyramid structure of n-type silicon solar cells by size-controlled silver nano-particle assisted etching. Such a nano-structure creates a front average weighted reflectance of less than 2.5% in the 300-1200nm range due to the broadband reflection suppression. The sodium hydroxide is used to obtain the low-area surface by post-etching the nano-structure, thus the severe carrier recombination associated with the nano-structured surface could be reduced. After emitter forming, screen printing and firing by means of the industrial fabrication protocol, an 18.3%-efficient nano-structured silicon solar cell with rear emitter is fabricated. The process of fabricating the solar cells matches well with industrial manufacture and shows promising prospects.
基金supported by the National Key Research and Development Program of China (2018YFD1000800)the National Natural Science Foundation of China (32072561 and 31772290)。
文摘Nodulin 26-like intrinsic proteins(NIPs) are a family of channel-forming transmembrane proteins that function in the transport of water and other small molecules.Some NIPs can mediate silicon transport across plasma membranes and lead to silicon accumulation in plants,which is beneficial for the growth and development of plants.Cucumber is one of the most widely consumed vegetables;however,the functions of NIPs in this crop are still largely unknown.Here,we report the functional characteristics of Cs NIP2;2.It was found that Cs NIP2;2 is a tandem repeat of Cs NIP2;1,which had been demonstrated to be a silicon influx transporter gene.Cs NIP2;2 has a selectivity filter composed of cysteine,serine,glycine and arginine(CSGR),which is different from all previously characterized silicon influx transporters in higher plants at the second helix position.Xenopus laevis oocytes injected with Cs NIP2;2 c RNA demonstrated a higher uptake of silicon than the control,and the uptake remained unchanged under low temperature.Cs NIP2;2 was found to be expressed in the root,stem,lamina and petiole,and exogenous silicon treatment decreased its expression in the stem but not in other tissues.Transient expression of Cs NIP2;2-e GFP fusion sequence in onion epidermal cells showed that Cs NIP2;2 was localized to the cell nucleus,plasma membrane and an unknown structure inside the cell.The results suggest that Cs NIP2;2 is a silicon influx transporter in cucumber,and its subcellular localization and the selectivity filter are different from those of the previously characterized silicon influx transporters in other plants.These findings may be helpful for understanding the functions of NIPs in cucumber plants.
基金The work was supported by the Agency of Ministry of Education,Science,Research and Sport of the Slovak Republic,the project:00162-0001(MS SR-3634/2010-11).
文摘Horsetail (Equisetum arvense L.) is a perennial herb which creates during the life cycle spring and summer stems. The selected species and populations were monitored in the years 2009-2011 in three different natural locations in Laborecká vrchovina (Slovakia). Samples were collected by destructive methods in all three locations. Silicon content was determined in dry biomass by AAS. Silicon content in plants ranged from 21.11 ± 3.24 g·kg-1 to 32.80 ± 8.03 g·kg-1. The highest content of silicon exhibited samples of the September collection. We found that the location and the year in terms of silicon content were not statistically significant. The main sources for statistical variability in the accumulation of silicon were during the collections.
基金supported by the National Basic Research Program of China(Grant No.2013CB632101)the National Natural Science Foundation of China forExcellent Young Researchers(Grant No.61222404)+1 种基金the Research and Development Program of Ministry of Education of China(Grant No.62501040202)the 2012 UAlberta MOST Joint Research Laboratories Program,China
文摘In the framework of density functional theory (DFT), we have studied the electronic properties of alkene/alkyne- hydrosilylated silicon nanocrystals (Si NCs) in the size range from 0.8 nm to 1.6 nm. Among the alkenes with all kinds of functional groups considered in this work, only those containing -NH2 and -C4H3S lead to significant hydrosilylation- induced changes in the gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of an Si NC at the ground state. The quantum confinement effect is dominant for all of the alkene- hydrosilylated Si NCs at the ground state. At the excited state, the prevailing effect of surface chemistry only occurs at the smallest (0.8 nm) Si NCs hydrosilylated with alkenes containing -NH2 and -C4H3S. Although the alkyne hydrosilylation gives rise to a more significant surface chemistry effect than alkene hydrosilylation, the quantum confinement effect remains dominant for alkyne-hydrosilylated Si NCs at the ground state. However, at the excited state, the effect of surface chemistry induced by the hydrosilylation with conjugated alkynes is strong enough to prevail over that of quantum confinement.
文摘The effect of NaCl with or without silicon on the growth and metabolism in rice seedlings cv. MTU1010 was studied. In these seedlings, the oxidative stress has been observed with NaCl treatments and the levels of proline, H<sub>2</sub>O<sub>2</sub> and malondialdehyde contents were increased whereas catalase activity was decreased. NaCl exposure at 25 mM, 50 mM and 100 mM concentrations in the test seedlings resulted in an increase in both reducing and non-reducing sugar content. There was a decrease in starch contents and the activity of starch phosphorylase was increased. NaCl stress also affected the activities of different carbohydrate metabolizing enzymes. The activities of sucrose synthase and sucrose phosphate synthase were increased, while the activity of acid invertase was decreased. Joint application of silicon with NaCl showed significant alterations on all parameters tested under the purview of NaCl treatment alone leading to better growth and metabolism in rice seedlings. Thus the use of silicon enriched fertilizers may help to grow healthy rice plants in NaCl rich soil.
文摘The metabolic activity of the fruits continues even after harvest,which results in the loss of bioactive compounds,a decrease in the quality of the fruits,softening and browning,among other negative effects.The use of certain elements such as silicon can improve postharvest quality,since it is involved in the metabolic,physiological and structural activity of plants,moreover can increase the quality of the fruits.In addition,nanotechnology has had a positive impact on crop yield,nutritional value,fruit quality and can improve antioxidant activity.For these reasons,the use of beneficial elements such as silicon in the form of nanoparticles can be a viable option to improve the characteristics of the fruits.In the present study was evaluated the application of potassium silicate(125,250 and 500 mg L^(−1))and SiO_(2) nanoparticles(125,250 and 500 mg L^(−1))during the development of the crop.The results showed that the application of silicon(potassium silicate and silicon nanoparticles)increased the content of total soluble solids(up to 15.6%higher than control),titratable acidity(up to 38.8%higher than control),vitamin C(up to 78.2%higher than control),phenols(up to 22%higher than control),flavonoids(up to 64.6%higher than control),and antioxidant activity in lipophilic compounds(up to 56.2%higher than control).This study suggests that the use of silicon can be a good option to increase the content of bioactive compounds in cucumber fruits when they are applied during the development of the crop.
文摘A Nicolet-200SXV FT-IR spectrometer combined with an exciting light set-up has been applied to determine the shallow impurity concentration in detector-grade silicon. The detection sensitivity of boron concentration is high up to 7.8 × 10-12. The calibration curve of boron concentration in high-purity silicon has been obtained, from which the experimental value of calibration factor of boron concentration in silicon is demonstrated to be 1.15 × 1013 cm-1.
基金Funded by the National Natural Science Foundation of China(Nos.51222508,51175211)
文摘We investigated the deformation behaviors of Zr_65Cu_17.5Ni_10Al_7.5 in superplastic forming in silicon mould via numerical modeling and experiments. The data needed for the constitutive formulation were obtained from compressive tests to establish a material library for finite-element simulation using a DEFORM 3D software. A constant speed forming process of a micro gear was modeled where the loading force, feature size and amount of deformation in the micro gear in silicon mould were analyzed in detail for the optimal requirements of micro gear forming and the protection of silicon mould. Guided by the modeling parameters, an amorphous metal micro gear was successfully obtained by our home-made superplastic forming system with the optimized parameters (temperature of 683 K, top speed of 0.003 mm/s until the load force reaching limiting value at 1960 N, and a gradually decelerating process for holding the force to the end). Our work gives a good example for optimization of superplastic forming and fabrication of BMGs in microparts.
基金Supported by College Students'Innovation and Enterpreneurship Training Program of Yanbian University(ydbksky2017495)
文摘[Objectives]This study was conducted to investigate the control effects of silicon fertilizer on growth of kohlrabi(Brassica oleracea L.var.caulorapa DC.)and Plutella xylostella.[Methods]Yougui and Guishen were selected and sprayed onto kohlrabi for 1,2 and 3 times,forming difference treatments.[Results]Spraying the two kinds of silicon fertilizers for different times promoted the growth of leaf length,leaf width and leaf thickness of kohlrabi,improved chlorophyll contents in kohlrabi leaves and corm yield,and adversely affected P.xylostella.Furthermore,higher treatment times led to a more remarkably effect and higher harm to P.xylostella.[Conclusions]In production,spraying silicon fertilizer onto maize for 2-3 times could realize the purposes of improving kohlrabi yield and alleviating damage by P.xylostella.
基金supported by National Natural Science Foundation of China (Nos. 11675118 and 11275136)
文摘The growth of silicon on Ag films via 40.68 MHz very-high-frequency (VHF) magnetron sputtering was investigated. The energy distribution and flux density of the ions on the substrate were also measured. The results showed that 40.68 MHz magnetron sputtering can produce ions with higher energy and lower flux density. The impact of these ions onto the grown surface promotes the growth of silicon, which is related to the crystalline nature and microstructure of the underlayer of the Ag films, and there is large particle growth of silicon on Ag films with a preferred orientation of (111), and two-dimensional growth of silicon on Ag films with a better face-centered cubic structure.
文摘This study was carried out to investigate the effects of silicon (Si) 3.6 mM (as calcium silicate) under drought stress induced by polyethylene glycol “PEG” at 15% (MW 8000), in addition to the control treatment on growth and some biochemical constituents of date palm cv. Barhee cultured in vitro. Drought stress (15% PEG) depressed the growth of shoot and decreased protein content and chlorophyll concentration. Addition of 3.6 mM Si could improve the growth of shoot and increase the protein content and leaf chlorophyll concentrations of stressed plants. The inclusion of Si to the PEG containing medium significantly increased the catalase (CAT) and superoxide dismutase (SOD) activity in regenerated shoot, compared to other treatments. As well as drought stress 15% PEG induced significant accumulation of shoots proline, which were decreased by added silicon. Moreover, the results were also supported by the observation that PEG stress-induced decrease the response percentage of root induction and root lengths was reversed by added silicon. Addition of Si obviously significantly increased the wax content in leaves, response percentage of root induction and root lengths of plantlets under drought stress. The results of this study indicate that the application of silicon improved growth attributes, effectively mitigate the adverse effect of drought, and increase tolerance of date palm plants for drought stress during the course of date palm tissue cultures.
文摘This work involves an investigation of nanostructures, microelectronic properties and domain engineering of nanoparticles thin layers of Pb(Zn1/ 3Nb2/3)O3-PbTiO3 (PZN-PT) ferroelectric single crystals deposited on nanostructured silicon substrate. In this study, devices made from PZN-4.5PT nanoparticles thin films successfully deposited on silicon substrate have been studied and discussed. SEM images show the formation of local black circles and hexagonal shapes probably due to the nucleation of a new Si-gel component or phase induced by annealing. Micro Xray Fluorescence mapping shows that the high values of Si and B atoms (≅7 and 4 normalized unit respectively) can be explained by the fact that the substrate is p-type silicon. The most interesting result of optical measurements is the very good absorption for all the thin films in UV, Visible and NIR regions with values from 70% to 90% in UV, from 75% to 93% in Visible and NIR. Tauc plots present particularities (rarely encountered behavior) with different segments or absorption changes showing the presence of multiple band gaps coming from the heterogeneity of the thin films (nanowires, gel and nanoparticles). Their values are 1.9 and 2.8 eV for DKRN-Gel, 2.1 and 3.1 eV for DKRN-UD and 2.1 and 3.2 eV for DKRN-D) corresponding respectively to the band gap of nanowires and that of the gel while the last ones correspond to the undoped and doped nanoparticles (3.1 and 3.2 eV respectively).
文摘Strained Si and its related materials, such as strained SiGe and strained silicon-carbon alloy (Si-C), are receiving tremendous interest due to their high carrier mobility. In this study we carry out a basic investigation of the change in microstructure of ion-implanted Si-C solid solution caused by rapid thermal annealing, because it is very important to realize a field-effect transistor made of this new material. The microstructures of arsenic-ion-, boron-ion-, and silicon-ion-implanted Si0.99C0.01 specimens upon thermal annealing are observed using transmission electron microscopy, and it is revealed that the rate of solid-state crystallization of ion-implanted Si-C is slower than that of the ion-implanted Si.
基金Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2020A1515110762Research Grants Council of the Hong Kong Special Administrative Region,China,Grant/Award Number:R6005‐20Shenzhen Key Laboratory of Advanced Energy Storage,Grant/Award Number:ZDSYS20220401141000001。
文摘Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.