To address the common issues of wrinkling,tearing,and uneven wall thickness in the actual sheet metal stamp-ing process of the outer ring of needle roller bearings,this study analyzes critical technical indicators suc...To address the common issues of wrinkling,tearing,and uneven wall thickness in the actual sheet metal stamp-ing process of the outer ring of needle roller bearings,this study analyzes critical technical indicators such asforming limits,thickness distribution,and principal strains in the forming process in detail.Three-dimensionalmodels of the concave and convex dies were constructed.The effects of different process parameters,includingstamping speed,edge pressure,sheet metal thickness,and friction coefficient,on the quality of the forming partswere investigated by varying these parameters.Subsequently,the orthogonal experimental method was used todetermine an optimal experimental group from multiple sets of experiments.It was found that under the processparameters of a stamping speed of 3000 mm/s,edge pressure of 2000 N,sheet metal thickness of 0.9 mm,andfriction coefficient of 0.125,the forming quality of the outer ring of the bearing is ideal.展开更多
Among the bottlenecks that hinder the improvement of the production efficiency of hot stamping are high strength and difficulty in edge cutting and hole punching.Starting from the preparation of hot stamping multiphas...Among the bottlenecks that hinder the improvement of the production efficiency of hot stamping are high strength and difficulty in edge cutting and hole punching.Starting from the preparation of hot stamping multiphase microstructure materials,this paper developed a plate quenching die system with controllable surface temperature and prepared four types of hot stamping plates with different martensite volume fractions.Then,straight edge cold cutting experiments were performed to study the influence of cutting clearance and cutting force on fracture quality.The results show that the bright zone is the largest when the cutting clearance is 0.14 mm,and the cutting experience coefficient of the hot stamping sheet with each martensite volume fraction is obtained when the cutting clearance is 0.14 mm.The research results of this paper were applied to the production of hot stamping parts.展开更多
With the improvement of safety performance,car parts have different requirements for material strength and energy absorption performance.The conventional 1500-MPa hot stamping steel cannot well meet the requirements.C...With the improvement of safety performance,car parts have different requirements for material strength and energy absorption performance.The conventional 1500-MPa hot stamping steel cannot well meet the requirements.Considering the new generation 600-MPa hot stamping steel,this study investigates the applicable car parts and hot stamping process,then designs a new body-in-white(BIW)crash test for obtaining the crash performance of the new material.Through the actual part development and crash test,it is verified that the application of the new generation hot stamping steel can improve the crash performance of BIW.展开更多
Stamping is a critical step in the manufacture of metallic bipolar plates.Typically,residual stress and a spring back effect appear on the bipolar plate after the stamping process,which impacts on the performance and ...Stamping is a critical step in the manufacture of metallic bipolar plates.Typically,residual stress and a spring back effect appear on the bipolar plate after the stamping process,which impacts on the performance and lifetime of the proton exchange membrane fuel cell(PEMFC).The residual stress and spring back behavior which occur as a result of stamping a bipolar plate are investigated in this study.The effects of the punch radius,the die radius,the channel depth,and the clearance between the punch and the die on the residual stress and forming quality of the bipolar plate are examined.The stamping process can be divided into three stages.The high stress area and the middle section residual stress area were selected to study the formation process and to obtain the composition of the residual stress regions.Spring back was mainly related to the position of the fixed end of the sheet and the degree of plastic deformation,and the sheet thickness have increased by 2μm after spring back.Based on the results of finite element analysis,as described by the distribution of residual stress,the formation,the thickness of the middle cross section and the equivalent plastic strain,it was found that all the tool parameters affected the distribution of the residual stress.This research can provide a design reference for the manufacture of metallic bipolar plates based on the stamping process.展开更多
The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive...The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive model specific to the temperature range from 350 °C to 500 °C was established and used for the numerical simulation. The trial and numerical simulation were conducted to clarify the quantitative characteristics of forming defects and to analyze the effects of process parameters on the forming defects. Results show that the rupture situation is ameliorated and the springback is eliminated in the aluminum alloy hot stamping. The wrinkling severity decreases with increasing blank holder force (BHF), but the BHF greater than 15 kN causes the rupture at the deepest drawing position of workpiece. The forming defects are avoided with lubricant in the feasible ranges of process parameters: the BHF of 3 to 5 kN and the stamping speed of 50 to 200 mm/s.展开更多
Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Fa...Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Facture surfaces of the coated steels were inspected under SEM.Experimental results indicate that the ultimate tensile strength and ductility of the Al-Si coated boron steel are lower than those of the uncoated steel under test conditions.Extensive cracks occur in the coating after tensile tests;the width and density of cracks are sensitive to the deformation temperatures and strain rates.The bare substrate exposed between the separate coating segments is oxidized.Appearance of the oxide degrades the Al-Si coating adhesion.Remarkable difference between formability of the coating layer and the substrate is confirmed.The formability of the Al-Si coating could be optimized by controlling the phase transformation of the ductile Fe-rich intermetallic compounds within it during the austenization.展开更多
To improve the manufacture efficiency and promote the application of composites in the automobile industry, a new composite forming method, thermal stamping, was discussed to form composite parts directly. Experiments...To improve the manufacture efficiency and promote the application of composites in the automobile industry, a new composite forming method, thermal stamping, was discussed to form composite parts directly. Experiments on two typical stamping processes, thermal bending and thermal deep drawing, were conducted to investigate the forming behavior of composite sheets and analyze the influence of forming temperature on the formed composite part. Experimental results show that the locking angle for woven composite is about 30°. The bending load is smaller than 5 N in the stamping process and decreases with the increase of temperature. The optimal temperature to form the carbon fiber composite is 170 ℃. The die temperature distribution and the deformation of composite sheet were simulated by FEA software ABAQUS. To investigate the fiber movement of carbon woven fabric during stamping, the two-node three-dimension linear Truss unit T2D3 was chosen as the fiber element. The simulation results have a good agreement to the experimental results.展开更多
Springback behavior of 6016 aluminum alloy in hot stamping was investigated by a series of experiments under different conditions using V-shape dies and a finite element model which was validated reliable was used to ...Springback behavior of 6016 aluminum alloy in hot stamping was investigated by a series of experiments under different conditions using V-shape dies and a finite element model which was validated reliable was used to further elucidate the springback mechanism. The effects of initial blank temperature, blank-holding force, die closing pressure and die corner radius were studied. It is found that springback decreases remarkably as the initial blank temperature rises up to 500 °C. The springback also reduces with the increase of die holding pressure and the decrease of die corner radius. Under different initial temperatures, the influence of blank-holding force is distinct. In addition, the bending and straightening of the side wall during the stamping process is found to interpret the negative springback phenomenon.展开更多
A semi analytical method was proposed to solve the mechanics problem of stamping a sheet on elastic die. The sheet was divided into four parts according to its deformation and contact with the punch and elastic die. ...A semi analytical method was proposed to solve the mechanics problem of stamping a sheet on elastic die. The sheet was divided into four parts according to its deformation and contact with the punch and elastic die. Analytical solutions were derived individually for each part by using elastic large deflection and plastic large deformation. Solutions were found out with MATLAB by developing a numerical algorithm. Interface forces were obtained by iteration under the compatibility conditions between the neighboring parts of the sheet. Computation shows the method is efficient.展开更多
High-resolution transmission electron microscopy(TEM),X-ray diffractometry(XRD),energy dispersive spectroscopy(EDS)and hardness test were used to study the re-dissolution and re-precipitation behavior of nano-precipit...High-resolution transmission electron microscopy(TEM),X-ray diffractometry(XRD),energy dispersive spectroscopy(EDS)and hardness test were used to study the re-dissolution and re-precipitation behavior of nano-precipitates of the spray-formed fine-grained Al-Cu-Mg alloy during rapid cold stamping deformation.Results show that the extruded Al-Cu-Mg alloy undergoes obvious re-dissolution and re-precipitation during the rapid cold-stamping deformation process.The plasticθ′phase has a slower re-dissolution rate than the brittle S′phase.The long strip-shaped S′phases and the acicularθ′phases in Al-Cu-Mg alloy after three passes of cold stamping basically re-dissolved to form a supersaturated solid solution.A large number of fine granular balanceθphases precipitate after four passes of rapid cold-stamping deformation.Rapid cold stamping deformation causes the S′phase andθ′phase to break and promote the nano-precipitate phases to re-dissolve.The high distortion free energy of the matrix promotes the precipitation of the equilibriumθphase,and the hardness of the alloy obviously increases from HB 55 to HB 125 after the rapid cold stamping process.展开更多
The influences of hot stamping parameters such as heating temperature,soaking time,deformation temperature and cooling medium on the phase transformation,microstructure and mechanical properties of 30MnB5 and 22MnB5 a...The influences of hot stamping parameters such as heating temperature,soaking time,deformation temperature and cooling medium on the phase transformation,microstructure and mechanical properties of 30MnB5 and 22MnB5 are investigated and analyzed in this work.The quenching experiment,tensile testing,hardness measurement and microstructure observation were conducted to obtain the mechanical and microstructural data.The results indicate that 30MnB5 possesses a higher tensile strength but a lower elongation than 22MnB5,if hot stamped at the same process parameter.The tensile strength and hardness of the hot stamped specimens decrease under inappropriate heating conditions for two reasons,insufficient austenitization or coarse austenite grains.The austenitic forming rate of 30MnB5 is higher than that of 22MnB5,because more cementite leads to higher nucleation rate and diffusion coefficient of carbon atom.More amount of fine martensite forms under the higher deformation temperature or the quicker cooling rate.展开更多
Process planning for large complicated stampings is more complicated, illegible and multiform than that for common stampings. In this paper, an intelligent master model of computer aided process planning (CAPP) for ...Process planning for large complicated stampings is more complicated, illegible and multiform than that for common stampings. In this paper, an intelligent master model of computer aided process planning (CAPP) for large complicated stampings has been developed based on knowledge based engineering (KBE) and feature technology. This innovative model consists of knowledge base (KB), process control structure (PCS), process information model (PIM), multidisciplinary design optimization (MDO), model link environment (MLE) and simulation engine (SE), to realize process planning, optimization, simulation and management integrated to complete intelligent CAPP system. In this model, KBE provides knowledge base, open architecture and knowledge reuse ability to deal with the multi-domain and multi-expression of process knowledge, and forms an integrated environment. With PIM, all the knowledge consisting of objects, constraints, cxtmricncc and decision-makings is carried by object-oriented method dynamically for knowledge-reasoning. PCS makes dynamical knowledge modified and updated timely and accordingly. MLE provides scv. cral methods to make CAPP sysmm associated and integrated. SE provides a programmable mechanism to interpret simulation course and result. Meanwhile, collaborative optimization, one method of MDO, is imported to deal with the optimization distributed for multiple purposes. All these make CAPP sysmm integrated and open to other systems, such as dic design and manufacturing system.展开更多
The effect of solution treatment time on the post-formed plasticity and ductile fracture of 7075 aluminum alloy in the hot stamping process was studied.Tensile tests were conducted on the specimens subjected to the ho...The effect of solution treatment time on the post-formed plasticity and ductile fracture of 7075 aluminum alloy in the hot stamping process was studied.Tensile tests were conducted on the specimens subjected to the hot stamping process with different solution treatment time.The digital image correlation(DIC)analysis was used to obtain the strain of the specimen.Based on the experiments and modeling,the Yld2000-3d yield criterion and the DF2014 ductile fracture criterion were calibrated and used to characterize the anisotropy and fracture behavior of the metal,respectively.Furthermore,the microstructure of specimens was studied.The experimental and simulation results indicate that the 7075 aluminum alloy retains distinct anisotropy after the hot stamping process,and there is no obvious effect of extending the solution treatment time on the material anisotropy.However,it is found that a longer solution treatment time can increase the fracture strain of the aluminum alloy during the hot stamping process,which may be related to the decrease of the second-phase particles size.展开更多
Based on plasticity theory and physical experiments, the quantitative relationships between elongation δ obtained byuniaxial tensile test and forming limits of tensile stamping operations are given, which mainly reso...Based on plasticity theory and physical experiments, the quantitative relationships between elongation δ obtained byuniaxial tensile test and forming limits of tensile stamping operations are given, which mainly resolves the problem thatforming limits can be derived from simple tensile test. The forming limit nomogram of tensile stamping operationsis also established to apply to engineering.展开更多
In this paper,the springback of TC4 titanium alloy under hot stamping condition was studied by means of experiment and numerical analysis.Firstly,an analytical model was established to predict the V-shaped springback ...In this paper,the springback of TC4 titanium alloy under hot stamping condition was studied by means of experiment and numerical analysis.Firstly,an analytical model was established to predict the V-shaped springback angleΔαunder the stretch-bending conditions.The model took into account of blank holder force,friction,property of the material,thickness of the sheet and the neutral layer shift.Then,the influence of several process parameters on springback was studied by experiment and finite element simulation using a V-shaped stamping tool.In the hot stamping tests,the titanium alloy sheet fractured seriously at room temperature.The titanium alloy has good formability when the initial temperature of the sheet is 750–900°C.However,the springback angle of formed parts is large and decreases with increasing temperature.The springback angleΔαdecreased by 50%from 0.5°to 0.25°,and the angleΔβdecreased by 46.7%from 1.5°to 0.8°when the initial temperature of sheet increased from 750°C to 900°C.The springback angle of titanium alloy sheet increases gradually with the increase of the punch radius,because of the increase of elastic recovery,the complex distribution of stress,the length of forming region and the decreasing degree of stress.Compared with the simulation results,the analytical model can better predict the springback angleΔα.展开更多
Based on the elastic-plastic large deformation finite element formulation as well as the shell element combined discrete Kirchhoff theoretical plate element (DKT) with membrane square element, deep-drawing bending spr...Based on the elastic-plastic large deformation finite element formulation as well as the shell element combined discrete Kirchhoff theoretical plate element (DKT) with membrane square element, deep-drawing bending springback of typical U-pattern is studied. At the same time the springback values of the drawing of patterns' unloading and trimming about the satellite aerial reflecting surface are predicted and also compared with those of the practical punch. Above two springbacks all obtain satisfactory results, which provide a kind of effective quantitative pre-prediction of springback for the practical engineers.展开更多
In this article,current application,materials,key equipments,finite element(FE) simulation and parts properties of hot stamping are introduced.The investigations of all processes and further excellent processes are de...In this article,current application,materials,key equipments,finite element(FE) simulation and parts properties of hot stamping are introduced.The investigations of all processes and further excellent processes are described.The survey of existing works,especially key equipments has revealed several gaps.Some new ideas and programs are proposed on the basis of traditional process.This article aims at providing an insight into a whole process backgrounds and pointing out the great potential for further investigations and innovations of hot stamping.展开更多
Forming limit curves(FLCs) are commonly used for evaluating the formability of sheet metals. However, it is difficult to obtain the FLCs with desirable accuracy by experiments due to that the friction effects are no...Forming limit curves(FLCs) are commonly used for evaluating the formability of sheet metals. However, it is difficult to obtain the FLCs with desirable accuracy by experiments due to that the friction effects are non-negligible under warm/hot stamping conditions. To investigate the experimental errors, experiments for obtaining the FLCs of the AA5754 are conducted at 250℃. Then, FE models are created and validated on the basis of experimental results. A number of FE simulations are carried out for FLC test-pieces and punches with different geometry configurations and varying friction coefficients between the test-piece and the punch. The errors for all the test conditions are predicted and analyzed. Particular attention of error analysis is paid to two special cases, namely, the biaxial FLC test and the uniaxial FLC test. The failure location and the variation of the error with respect to the friction coefficient are studied as well. The results obtained from the FLC tests and the above analyses show that, for the biaxial tension state, the friction coefficient should be controlled within 0.15 to avoid significant shifting of the necking location away from the center of the punch; for the uniaxial tension state, the friction coefficient should be controlled within 0.1 to guarantee the validity of the data collected from FLC tests. The conclusions summarized are beneficial for obtaining accurate FLCs under warm/hot stamping conditions.展开更多
Ls-DYNA software is adopted to conduct research of numerical simulation on hot stamping of side impact beam to calculate the temperature field distribution, stress field distribution, forming limit diagram (FLD) fig...Ls-DYNA software is adopted to conduct research of numerical simulation on hot stamping of side impact beam to calculate the temperature field distribution, stress field distribution, forming limit diagram (FLD) figure, etc. in the course of hot stamping so as to predict and analyze the formability of parts. ProCAST software is employed to conduct research of numerical simulation on solid quenching course concerning hot stamping to calculate temperature field distri- bution of tools and component of muhiple stamping cycles. The results obtained from numerical simulation can provide significant reference value to hot stamping part design, formability predication and tools cooling system design.展开更多
基金supported by the China Postdoctoral Science Foundation(Grant No.2022M721395)the National Natural Science Foundation of China(Grant No.72072089).
文摘To address the common issues of wrinkling,tearing,and uneven wall thickness in the actual sheet metal stamp-ing process of the outer ring of needle roller bearings,this study analyzes critical technical indicators such asforming limits,thickness distribution,and principal strains in the forming process in detail.Three-dimensionalmodels of the concave and convex dies were constructed.The effects of different process parameters,includingstamping speed,edge pressure,sheet metal thickness,and friction coefficient,on the quality of the forming partswere investigated by varying these parameters.Subsequently,the orthogonal experimental method was used todetermine an optimal experimental group from multiple sets of experiments.It was found that under the processparameters of a stamping speed of 3000 mm/s,edge pressure of 2000 N,sheet metal thickness of 0.9 mm,andfriction coefficient of 0.125,the forming quality of the outer ring of the bearing is ideal.
文摘Among the bottlenecks that hinder the improvement of the production efficiency of hot stamping are high strength and difficulty in edge cutting and hole punching.Starting from the preparation of hot stamping multiphase microstructure materials,this paper developed a plate quenching die system with controllable surface temperature and prepared four types of hot stamping plates with different martensite volume fractions.Then,straight edge cold cutting experiments were performed to study the influence of cutting clearance and cutting force on fracture quality.The results show that the bright zone is the largest when the cutting clearance is 0.14 mm,and the cutting experience coefficient of the hot stamping sheet with each martensite volume fraction is obtained when the cutting clearance is 0.14 mm.The research results of this paper were applied to the production of hot stamping parts.
文摘With the improvement of safety performance,car parts have different requirements for material strength and energy absorption performance.The conventional 1500-MPa hot stamping steel cannot well meet the requirements.Considering the new generation 600-MPa hot stamping steel,this study investigates the applicable car parts and hot stamping process,then designs a new body-in-white(BIW)crash test for obtaining the crash performance of the new material.Through the actual part development and crash test,it is verified that the application of the new generation hot stamping steel can improve the crash performance of BIW.
基金This research was supported by the Sichuan Science and Technology Program(2023YFS0355).
文摘Stamping is a critical step in the manufacture of metallic bipolar plates.Typically,residual stress and a spring back effect appear on the bipolar plate after the stamping process,which impacts on the performance and lifetime of the proton exchange membrane fuel cell(PEMFC).The residual stress and spring back behavior which occur as a result of stamping a bipolar plate are investigated in this study.The effects of the punch radius,the die radius,the channel depth,and the clearance between the punch and the die on the residual stress and forming quality of the bipolar plate are examined.The stamping process can be divided into three stages.The high stress area and the middle section residual stress area were selected to study the formation process and to obtain the composition of the residual stress regions.Spring back was mainly related to the position of the fixed end of the sheet and the degree of plastic deformation,and the sheet thickness have increased by 2μm after spring back.Based on the results of finite element analysis,as described by the distribution of residual stress,the formation,the thickness of the middle cross section and the equivalent plastic strain,it was found that all the tool parameters affected the distribution of the residual stress.This research can provide a design reference for the manufacture of metallic bipolar plates based on the stamping process.
基金Project(P2014-15)supported by the State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,ChinaProject supported by the Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,China
文摘The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive model specific to the temperature range from 350 °C to 500 °C was established and used for the numerical simulation. The trial and numerical simulation were conducted to clarify the quantitative characteristics of forming defects and to analyze the effects of process parameters on the forming defects. Results show that the rupture situation is ameliorated and the springback is eliminated in the aluminum alloy hot stamping. The wrinkling severity decreases with increasing blank holder force (BHF), but the BHF greater than 15 kN causes the rupture at the deepest drawing position of workpiece. The forming defects are avoided with lubricant in the feasible ranges of process parameters: the BHF of 3 to 5 kN and the stamping speed of 50 to 200 mm/s.
基金Project (51275185) supported by the National Natural Science Foundation of China
文摘Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Facture surfaces of the coated steels were inspected under SEM.Experimental results indicate that the ultimate tensile strength and ductility of the Al-Si coated boron steel are lower than those of the uncoated steel under test conditions.Extensive cracks occur in the coating after tensile tests;the width and density of cracks are sensitive to the deformation temperatures and strain rates.The bare substrate exposed between the separate coating segments is oxidized.Appearance of the oxide degrades the Al-Si coating adhesion.Remarkable difference between formability of the coating layer and the substrate is confirmed.The formability of the Al-Si coating could be optimized by controlling the phase transformation of the ductile Fe-rich intermetallic compounds within it during the austenization.
基金Project(51375369)supported by the National Natural Science Foundation of ChinaProject(SYG201137)supported by the Science and Technology Development Program of Suzhou,China
文摘To improve the manufacture efficiency and promote the application of composites in the automobile industry, a new composite forming method, thermal stamping, was discussed to form composite parts directly. Experiments on two typical stamping processes, thermal bending and thermal deep drawing, were conducted to investigate the forming behavior of composite sheets and analyze the influence of forming temperature on the formed composite part. Experimental results show that the locking angle for woven composite is about 30°. The bending load is smaller than 5 N in the stamping process and decreases with the increase of temperature. The optimal temperature to form the carbon fiber composite is 170 ℃. The die temperature distribution and the deformation of composite sheet were simulated by FEA software ABAQUS. To investigate the fiber movement of carbon woven fabric during stamping, the two-node three-dimension linear Truss unit T2D3 was chosen as the fiber element. The simulation results have a good agreement to the experimental results.
基金Projects(U1564202,51705018)supported by the National Natural Science Foundation of ChinaProject(FRF-TP-15-087A1)supported by the Fundamental Research Funds for the Central Universities,China
文摘Springback behavior of 6016 aluminum alloy in hot stamping was investigated by a series of experiments under different conditions using V-shape dies and a finite element model which was validated reliable was used to further elucidate the springback mechanism. The effects of initial blank temperature, blank-holding force, die closing pressure and die corner radius were studied. It is found that springback decreases remarkably as the initial blank temperature rises up to 500 °C. The springback also reduces with the increase of die holding pressure and the decrease of die corner radius. Under different initial temperatures, the influence of blank-holding force is distinct. In addition, the bending and straightening of the side wall during the stamping process is found to interpret the negative springback phenomenon.
文摘A semi analytical method was proposed to solve the mechanics problem of stamping a sheet on elastic die. The sheet was divided into four parts according to its deformation and contact with the punch and elastic die. Analytical solutions were derived individually for each part by using elastic large deflection and plastic large deformation. Solutions were found out with MATLAB by developing a numerical algorithm. Interface forces were obtained by iteration under the compatibility conditions between the neighboring parts of the sheet. Computation shows the method is efficient.
基金Project(2019JJ60050) supported by the Natural Science Foundation of Hunan Province,China
文摘High-resolution transmission electron microscopy(TEM),X-ray diffractometry(XRD),energy dispersive spectroscopy(EDS)and hardness test were used to study the re-dissolution and re-precipitation behavior of nano-precipitates of the spray-formed fine-grained Al-Cu-Mg alloy during rapid cold stamping deformation.Results show that the extruded Al-Cu-Mg alloy undergoes obvious re-dissolution and re-precipitation during the rapid cold-stamping deformation process.The plasticθ′phase has a slower re-dissolution rate than the brittle S′phase.The long strip-shaped S′phases and the acicularθ′phases in Al-Cu-Mg alloy after three passes of cold stamping basically re-dissolved to form a supersaturated solid solution.A large number of fine granular balanceθphases precipitate after four passes of rapid cold-stamping deformation.Rapid cold stamping deformation causes the S′phase andθ′phase to break and promote the nano-precipitate phases to re-dissolve.The high distortion free energy of the matrix promotes the precipitation of the equilibriumθphase,and the hardness of the alloy obviously increases from HB 55 to HB 125 after the rapid cold stamping process.
基金Projects(51705018,U1564202)supported by the National Natural Science Foundation of China
文摘The influences of hot stamping parameters such as heating temperature,soaking time,deformation temperature and cooling medium on the phase transformation,microstructure and mechanical properties of 30MnB5 and 22MnB5 are investigated and analyzed in this work.The quenching experiment,tensile testing,hardness measurement and microstructure observation were conducted to obtain the mechanical and microstructural data.The results indicate that 30MnB5 possesses a higher tensile strength but a lower elongation than 22MnB5,if hot stamped at the same process parameter.The tensile strength and hardness of the hot stamped specimens decrease under inappropriate heating conditions for two reasons,insufficient austenitization or coarse austenite grains.The austenitic forming rate of 30MnB5 is higher than that of 22MnB5,because more cementite leads to higher nucleation rate and diffusion coefficient of carbon atom.More amount of fine martensite forms under the higher deformation temperature or the quicker cooling rate.
文摘Process planning for large complicated stampings is more complicated, illegible and multiform than that for common stampings. In this paper, an intelligent master model of computer aided process planning (CAPP) for large complicated stampings has been developed based on knowledge based engineering (KBE) and feature technology. This innovative model consists of knowledge base (KB), process control structure (PCS), process information model (PIM), multidisciplinary design optimization (MDO), model link environment (MLE) and simulation engine (SE), to realize process planning, optimization, simulation and management integrated to complete intelligent CAPP system. In this model, KBE provides knowledge base, open architecture and knowledge reuse ability to deal with the multi-domain and multi-expression of process knowledge, and forms an integrated environment. With PIM, all the knowledge consisting of objects, constraints, cxtmricncc and decision-makings is carried by object-oriented method dynamically for knowledge-reasoning. PCS makes dynamical knowledge modified and updated timely and accordingly. MLE provides scv. cral methods to make CAPP sysmm associated and integrated. SE provides a programmable mechanism to interpret simulation course and result. Meanwhile, collaborative optimization, one method of MDO, is imported to deal with the optimization distributed for multiple purposes. All these make CAPP sysmm integrated and open to other systems, such as dic design and manufacturing system.
基金the National Natural Science Foundation of China(No.U1760205).
文摘The effect of solution treatment time on the post-formed plasticity and ductile fracture of 7075 aluminum alloy in the hot stamping process was studied.Tensile tests were conducted on the specimens subjected to the hot stamping process with different solution treatment time.The digital image correlation(DIC)analysis was used to obtain the strain of the specimen.Based on the experiments and modeling,the Yld2000-3d yield criterion and the DF2014 ductile fracture criterion were calibrated and used to characterize the anisotropy and fracture behavior of the metal,respectively.Furthermore,the microstructure of specimens was studied.The experimental and simulation results indicate that the 7075 aluminum alloy retains distinct anisotropy after the hot stamping process,and there is no obvious effect of extending the solution treatment time on the material anisotropy.However,it is found that a longer solution treatment time can increase the fracture strain of the aluminum alloy during the hot stamping process,which may be related to the decrease of the second-phase particles size.
文摘Based on plasticity theory and physical experiments, the quantitative relationships between elongation δ obtained byuniaxial tensile test and forming limits of tensile stamping operations are given, which mainly resolves the problem thatforming limits can be derived from simple tensile test. The forming limit nomogram of tensile stamping operationsis also established to apply to engineering.
基金Projects(U1564202,51705018)supported by the National Natural Science Foundation of ChinaProject supported by the Beijing Laboratory of Modern Transportation Metal Materials and Processing Technology and the Beijing Key Laboratory of Metal Forming Lightweight,China。
文摘In this paper,the springback of TC4 titanium alloy under hot stamping condition was studied by means of experiment and numerical analysis.Firstly,an analytical model was established to predict the V-shaped springback angleΔαunder the stretch-bending conditions.The model took into account of blank holder force,friction,property of the material,thickness of the sheet and the neutral layer shift.Then,the influence of several process parameters on springback was studied by experiment and finite element simulation using a V-shaped stamping tool.In the hot stamping tests,the titanium alloy sheet fractured seriously at room temperature.The titanium alloy has good formability when the initial temperature of the sheet is 750–900°C.However,the springback angle of formed parts is large and decreases with increasing temperature.The springback angleΔαdecreased by 50%from 0.5°to 0.25°,and the angleΔβdecreased by 46.7%from 1.5°to 0.8°when the initial temperature of sheet increased from 750°C to 900°C.The springback angle of titanium alloy sheet increases gradually with the increase of the punch radius,because of the increase of elastic recovery,the complex distribution of stress,the length of forming region and the decreasing degree of stress.Compared with the simulation results,the analytical model can better predict the springback angleΔα.
基金This project is supported by National Natural Science Foundation of China (No.19832020)Provincial Natural Science Foundation of Jilin (No.20000519)
文摘Based on the elastic-plastic large deformation finite element formulation as well as the shell element combined discrete Kirchhoff theoretical plate element (DKT) with membrane square element, deep-drawing bending springback of typical U-pattern is studied. At the same time the springback values of the drawing of patterns' unloading and trimming about the satellite aerial reflecting surface are predicted and also compared with those of the practical punch. Above two springbacks all obtain satisfactory results, which provide a kind of effective quantitative pre-prediction of springback for the practical engineers.
基金National Science and Technology Supporting Program of China(No.2011BAG03B02)
文摘In this article,current application,materials,key equipments,finite element(FE) simulation and parts properties of hot stamping are introduced.The investigations of all processes and further excellent processes are described.The survey of existing works,especially key equipments has revealed several gaps.Some new ideas and programs are proposed on the basis of traditional process.This article aims at providing an insight into a whole process backgrounds and pointing out the great potential for further investigations and innovations of hot stamping.
基金Supported by National Natural Science Foundation of China(Grant No.51375201)Jilin Province Science and Technology Development Plan(Grant No.20130101048JC)Open Research Fund of Shanghai Key Laboratory of Digital Manufacturer for Thin-walled Structure(Grant No.2013001)
文摘Forming limit curves(FLCs) are commonly used for evaluating the formability of sheet metals. However, it is difficult to obtain the FLCs with desirable accuracy by experiments due to that the friction effects are non-negligible under warm/hot stamping conditions. To investigate the experimental errors, experiments for obtaining the FLCs of the AA5754 are conducted at 250℃. Then, FE models are created and validated on the basis of experimental results. A number of FE simulations are carried out for FLC test-pieces and punches with different geometry configurations and varying friction coefficients between the test-piece and the punch. The errors for all the test conditions are predicted and analyzed. Particular attention of error analysis is paid to two special cases, namely, the biaxial FLC test and the uniaxial FLC test. The failure location and the variation of the error with respect to the friction coefficient are studied as well. The results obtained from the FLC tests and the above analyses show that, for the biaxial tension state, the friction coefficient should be controlled within 0.15 to avoid significant shifting of the necking location away from the center of the punch; for the uniaxial tension state, the friction coefficient should be controlled within 0.1 to guarantee the validity of the data collected from FLC tests. The conclusions summarized are beneficial for obtaining accurate FLCs under warm/hot stamping conditions.
基金National Science and Technology Supporting Program of China(No.20 11BAG03B02)
文摘Ls-DYNA software is adopted to conduct research of numerical simulation on hot stamping of side impact beam to calculate the temperature field distribution, stress field distribution, forming limit diagram (FLD) figure, etc. in the course of hot stamping so as to predict and analyze the formability of parts. ProCAST software is employed to conduct research of numerical simulation on solid quenching course concerning hot stamping to calculate temperature field distri- bution of tools and component of muhiple stamping cycles. The results obtained from numerical simulation can provide significant reference value to hot stamping part design, formability predication and tools cooling system design.