The centroid and attitude of target must be predicted in target tracking of IR image for increasing capture probability. CMAC estimator can effectually resolve conflict between operational counts and predicting preci...The centroid and attitude of target must be predicted in target tracking of IR image for increasing capture probability. CMAC estimator can effectually resolve conflict between operational counts and predicting precision. CMAC estimator is trained with a linear model, then the centroid and attitude are predicted. It is trained once by actual error in each frame to reduce the estimate error. CMAC has excellent predicting precision and small operational counts, it adapts to real time processing for target tracking. The experimental results show that CMAC can accurately estimate the centroid and attitude of target. It adapts to change of model and has robustness.展开更多
In view of current situation of bad data synchronization, image blurring and tracking station stability in tracking target identification, a kind of tracking target identification model based on multiple algorithms wa...In view of current situation of bad data synchronization, image blurring and tracking station stability in tracking target identification, a kind of tracking target identification model based on multiple algorithms was put forward, firstly establishing the image degradation model, using the wavelet algorithm for image preprocessing, doing image edge segmentation by using Robert algorithm after pretreatment, then using the maximum variance threshold method for image threshold segmentation, then extracting target features from the segmented image, and finally using the ABS algorithm to finish target tracking. Experiments proved the proposed model practical and effective.展开更多
文摘The centroid and attitude of target must be predicted in target tracking of IR image for increasing capture probability. CMAC estimator can effectually resolve conflict between operational counts and predicting precision. CMAC estimator is trained with a linear model, then the centroid and attitude are predicted. It is trained once by actual error in each frame to reduce the estimate error. CMAC has excellent predicting precision and small operational counts, it adapts to real time processing for target tracking. The experimental results show that CMAC can accurately estimate the centroid and attitude of target. It adapts to change of model and has robustness.
文摘In view of current situation of bad data synchronization, image blurring and tracking station stability in tracking target identification, a kind of tracking target identification model based on multiple algorithms was put forward, firstly establishing the image degradation model, using the wavelet algorithm for image preprocessing, doing image edge segmentation by using Robert algorithm after pretreatment, then using the maximum variance threshold method for image threshold segmentation, then extracting target features from the segmented image, and finally using the ABS algorithm to finish target tracking. Experiments proved the proposed model practical and effective.