期刊文献+
共找到109,362篇文章
< 1 2 250 >
每页显示 20 50 100
Using deep neural networks coupled with principal component analysis for ore production forecasting at open-pit mines
1
作者 Chengkai Fan Na Zhang +1 位作者 Bei Jiang Wei Victor Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期727-740,共14页
Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challe... Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines. 展开更多
关键词 Oil sands production Open-pit mining Deep learning Principal component analysis(PCA) Artificial neural network Mining engineering
下载PDF
基于特征图像组合与改进ResNet-18的电能质量扰动识别方法 被引量:1
2
作者 张逸 欧杰宇 +1 位作者 金涛 毕贵红 《中国电机工程学报》 EI CSCD 北大核心 2024年第7期2531-2544,I0003,共15页
针对传统电能质量扰动(power quality disturbance,PQD)识别体系中单一图像特征信息受限与算法识别能力不足等问题,依据特征融合的思想,提出一种基于特征图像组合与改进ResNet-18的PQD识别方法。首先,对PQD信号进行变分模态分解(variati... 针对传统电能质量扰动(power quality disturbance,PQD)识别体系中单一图像特征信息受限与算法识别能力不足等问题,依据特征融合的思想,提出一种基于特征图像组合与改进ResNet-18的PQD识别方法。首先,对PQD信号进行变分模态分解(variational mode decomposition,VMD)得到一系列固有模态函数(intrinsic mode functions,IMFs)与残差分量;其次,将IMFs、残差分量、原始扰动信号与Subtract分量纵向拼接成分量矩阵,利用信号-图像转化方法生成特征分量彩色图;再次,对原始扰动信号进行连续小波变换(continuous wavelet transform,CWT)生成小波时-频图;最后,将特征分量彩色图与小波时-频图组合输入改进的六通道ResNet-18中训练学习并完成扰动识别。通过仿真对PQD识别方法进行分析并将其与目前常用识别体系进行比较。结果表明,所提方法具有较好的抗噪性能并且能够更好地提取PQD特征信息,达到更高的识别准确率。 展开更多
关键词 电能质量扰动 变分模态分解 特征分量彩色图 小波时-频图 残差网络
下载PDF
Predicting the alloying element yield in a ladle furnace using principal component analysis and deep neural network 被引量:6
3
作者 Zicheng Xin Jiangshan Zhang +2 位作者 Yu Jin Jin Zheng Qing Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期335-344,共10页
The composition control of molten steel is one of the main functions in the ladle furnace(LF)refining process.In this study,a feasible model was established to predict the alloying element yield using principal compon... The composition control of molten steel is one of the main functions in the ladle furnace(LF)refining process.In this study,a feasible model was established to predict the alloying element yield using principal component analysis(PCA)and deep neural network(DNN).The PCA was used to eliminate collinearity and reduce the dimension of the input variables,and then the data processed by PCA were used to establish the DNN model.The prediction hit ratios for the Si element yield in the error ranges of±1%,±3%,and±5%are 54.0%,93.8%,and98.8%,respectively,whereas those of the Mn element yield in the error ranges of±1%,±2%,and±3%are 77.0%,96.3%,and 99.5%,respectively,in the PCA-DNN model.The results demonstrate that the PCA-DNN model performs better than the known models,such as the reference heat method,multiple linear regression,modified backpropagation,and DNN model.Meanwhile,the accurate prediction of the alloying element yield can greatly contribute to realizing a“narrow window”control of composition in molten steel.The construction of the prediction model for the element yield can also provide a reference for the development of an alloying control model in LF intelligent refining in the modern iron and steel industry. 展开更多
关键词 ladle furnace element yield principal component analysis deep neural network statistical evaluation
下载PDF
基于SMOTE-IKPCA-SeNet深度迁移学习的小批量生产质量预测研究 被引量:1
4
作者 杨剑锋 崔少红 +1 位作者 段家琦 王宁 《工业工程》 2024年第2期98-106,157,共10页
随着智能制造技术的发展和客户个性化需求的增加,多品种小批量生产方式逐渐成为制造业的主流。面向大批量生产、以统计过程控制为核心的质量管理方式并不适用于小批量生产。针对复杂生产过程存在参数多、非线性和交互作用的问题,提出利... 随着智能制造技术的发展和客户个性化需求的增加,多品种小批量生产方式逐渐成为制造业的主流。面向大批量生产、以统计过程控制为核心的质量管理方式并不适用于小批量生产。针对复杂生产过程存在参数多、非线性和交互作用的问题,提出利用深度迁移学习的方式将历史生产数据作为源域迁移至小样本目标产品数据进行质量预测。首先,通过合成少数类过采样技术(synthetic minority over-sampling technique,SMOTE)和改进的核主成分分析(improved kernel principal component analysis,IKPCA)算法筛选源域和目标域的可迁移特征,这不仅兼顾了特征重要性和可迁移性,还减少了“负迁移”,提高了模型泛化能力;然后,采用结合通道注意力机制的卷积神经网络SeNet构建基于深度迁移学习的质量预测模型。仿真结果表明,随着目标域样本的增加,所提方法的预测准确性明显优于广泛采用的支持向量机建模方法。同时,所提可迁移特征筛选方法显著提高了深度迁移学习的质量预测效果,为复杂的小批量生产过程质量保证提供了新方法。 展开更多
关键词 小批量生产质量预测 深度迁移学习 SMOTE IKPCA Senet
下载PDF
基于Pyramid-Attention-U-Net深度学习模型的实时拓扑优化设计
5
作者 史冬岩 王立夫 +1 位作者 张博洋 李光亮 《工程力学》 EI CSCD 北大核心 2024年第11期217-224,共8页
拓扑优化设计可为现代工程提供具有卓越热学、力学及声学等多学科性能的创新型结构,移动变形组件法(Moving Morphable Components,MMC)以其独特的显示拓扑优化方法备受青睐,MMC法通过一系列可移动变形的显示组件间的移动、变形、重叠实... 拓扑优化设计可为现代工程提供具有卓越热学、力学及声学等多学科性能的创新型结构,移动变形组件法(Moving Morphable Components,MMC)以其独特的显示拓扑优化方法备受青睐,MMC法通过一系列可移动变形的显示组件间的移动、变形、重叠实现边界演化以完成结构优化的目的。该文利用椭圆形初始组件替代原有直线型骨架厚度二次变化组件进行拓扑优化。在减少设计变量次数的同时,可缩短一定的计算时间,但在实际计算中,随着初始组件单元数增加,中间迭代计算过程时间依旧相对较多,为精确实时获取拓扑优化构型,该文引入Pyramid-Attention-U-Net(PA-U-Net)深度学习模型加速优化设计,避免中间迭代计算过程。研究结果表明:该方法不仅在可忽略的计算时间内准确实时获取不同参数下的初始组件拓扑构型,而且准确率可达90.89%,高于其他深度学习网络模型。同时这种将深度学习与拓扑优化方法有机结合的形式在大型工程结构优化设计中具有广阔的应用前景。 展开更多
关键词 拓扑优化 深度学习 实时 移动变形组件法 PA-U-net
下载PDF
Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community:a comparative analysis 被引量:2
6
作者 Guolong Zhao Biao Zhao +5 位作者 Wenfeng Ding Lianjia Xin Zhiwen Nian Jianhao Peng Ning He Jiuhua Xu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期190-271,共82页
The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,su... The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,such as thin-walled structures,microchannels,and complex surfaces.Mechanical machining is the main material removal process for the vast majority of aerospace components.However,many problems exist,including severe and rapid tool wear,low machining efficiency,and poor surface integrity.Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies(vibration,laser,electricity,etc)to improve the machinability of local materials and decrease the burden of mechanical machining.This provides a feasible and promising method to improve the material removal rate and surface quality,reduce process forces,and prolong tool life.However,systematic reviews of this technology are lacking with respect to the current research status and development direction.This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community.In addition,this paper focuses on the processing principles,material responses under nontraditional energy,resultant forces and temperatures,material removal mechanisms,and applications of these processes,including vibration-,laser-,electric-,magnetic-,chemical-,advanced coolant-,and hybrid nontraditional energy-assisted mechanical machining.Finally,a comprehensive summary of the principles,advantages,and limitations of each hybrid process is provided,and future perspectives on forward design,device development,and sustainability of nontraditional energy-assisted mechanical machining processes are discussed. 展开更多
关键词 difficult-to-cut materials geometrically complex components nontraditional energy mechanical machining aerospace community
下载PDF
基于稠密连接的通道混合式PCANet的低分辨率有遮挡人脸识别
7
作者 秦娥 何佳瑶 +2 位作者 刘银伟 朱娅妮 李小薪 《高技术通讯》 CAS 北大核心 2024年第6期602-615,共14页
针对低分辨率有遮挡人脸识别问题提出了基于稠密连接的通道混合式主成分分析网络(DCH-PCANet)。现有的PCANet模型的卷积层只使用了通道无关式卷积(CIC)。通道无关式卷积由于未考虑特征图在通道方向上的相关性,可以更好地凸显单个特征图... 针对低分辨率有遮挡人脸识别问题提出了基于稠密连接的通道混合式主成分分析网络(DCH-PCANet)。现有的PCANet模型的卷积层只使用了通道无关式卷积(CIC)。通道无关式卷积由于未考虑特征图在通道方向上的相关性,可以更好地凸显单个特征图的局部纹理特征,对于补偿因低分辨率、遮挡等因素导致的特征损失具有重要意义,但也会强化遮挡区域的特征,从而放大坏特征的影响范围;而通道相关式卷积(CDC)由于充分考虑了各特征图在通道方向上的相关性,可以较好地抑制坏特征的作用,形成较为稀疏的特征图。在PCANet中添加了基于通道相关式卷积的特征图提取分支,形成了通道混合式PCANet;并且引入了稠密连接,以充分利用低阶特征提升有遮挡图像识别的鲁棒性。针对如下4种数据集进行了实验:受控环境、真实遮挡和模拟低分辨率的人脸数据集(AR人脸数据集),非受控环境、真实遮挡和模拟低分辨率的人脸数据集(MFR2和PKUMasked-Face),非受控环境、真实遮挡和真实低分辨率的人脸数据集(自建数据集)。实验结果表明,与现有方法相比,所提出的基于稠密连接的通道混合式PCANet具更好的遮挡鲁棒性和低分辨率鲁棒性,可以作为前沿方法的有效补充,提升其识别性能。 展开更多
关键词 有遮挡人脸识别 主成分分析网络(PCAnet) 通道相关式卷积(CDC) 稠密连接
下载PDF
Winter wheat yield improvement by genetic gain across different provinces in China 被引量:1
8
作者 Wei Chen Jingjuan Zhang Xiping Deng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期468-483,共16页
The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statist... The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statistics of China and experimental yield from literature,this study aims to(1)illustrate the increasing patterns of production yield among different provinces from 1978 to 2018 in China,(2)explore the genetic gain in yield and yield relevant traits through the variety replacement based on experimental yield from 1937 to 2016 in China,and(3)compare the yield gap between experimental yield and production yield.The results show that both the production and experimental yields significantly increased along with the variety replacement.The national annual yield increase ratio for the production yield was 1.67%from 1978 to 2018,varying from 0.96%in Sichuan Province to 2.78%in Hebei Province;such ratio for the experimental yield was 1.13%from 1937 to 2016.The yield gap between experimental and production yields decreased from the 1970s to the 2010s.This study reveals significant increases in some yield components consequent to variety replacement,including thousand-grain weight,kernel number per spike,and grain number per square meter;however,no change is shown in spike number per square meter.The biomass and harvest index consistently and significantly increased,whereas the plant height decreased significantly. 展开更多
关键词 genetic gain winter wheat YIELD yield components
下载PDF
U-Net Models for Representing Wind Stress Anomalies over the Tropical Pacific and Their Integrations with an Intermediate Coupled Model for ENSO Studies 被引量:1
9
作者 Shuangying Du Rong-Hua Zhang 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1403-1416,共14页
El Niño-Southern Oscillation(ENSO)is the strongest interannual climate mode influencing the coupled ocean-atmosphere system in the tropical Pacific,and numerous dynamical and statistical models have been develope... El Niño-Southern Oscillation(ENSO)is the strongest interannual climate mode influencing the coupled ocean-atmosphere system in the tropical Pacific,and numerous dynamical and statistical models have been developed to simulate and predict it.In some simplified coupled ocean-atmosphere models,the relationship between sea surface temperature(SST)anomalies and wind stress(τ)anomalies can be constructed by statistical methods,such as singular value decomposition(SVD).In recent years,the applications of artificial intelligence(AI)to climate modeling have shown promising prospects,and the integrations of AI-based models with dynamical models are active areas of research.This study constructs U-Net models for representing the relationship between SSTAs andτanomalies in the tropical Pacific;the UNet-derivedτmodel,denoted asτUNet,is then used to replace the original SVD-basedτmodel of an intermediate coupled model(ICM),forming a newly AI-integrated ICM,referred to as ICM-UNet.The simulation results obtained from ICM-UNet demonstrate their ability to represent the spatiotemporal variability of oceanic and atmospheric anomaly fields in the equatorial Pacific.In the ocean-only case study,theτUNet-derived wind stress anomaly fields are used to force the ocean component of the ICM,the results of which also indicate reasonable simulations of typical ENSO events.These results demonstrate the feasibility of integrating an AI-derived model with a physics-based dynamical model for ENSO modeling studies.Furthermore,the successful integration of the dynamical ocean models with the AI-based atmospheric wind model provides a novel approach to ocean-atmosphere interaction modeling studies. 展开更多
关键词 U-net models wind stress anomalies ICM integration of AI and physical components
下载PDF
Rail Surface Defect Detection Based on Improved UPerNet and Connected Component Analysis
10
作者 Yongzhi Min Jiafeng Li Yaxing Li 《Computers, Materials & Continua》 SCIE EI 2023年第10期941-962,共22页
To guarantee the safety of railway operations,the swift detection of rail surface defects becomes imperative.Traditional methods of manual inspection and conventional nondestructive testing prove inefficient,especiall... To guarantee the safety of railway operations,the swift detection of rail surface defects becomes imperative.Traditional methods of manual inspection and conventional nondestructive testing prove inefficient,especially when scaling to extensive railway networks.Moreover,the unpredictable and intricate nature of defect edge shapes further complicates detection efforts.Addressing these challenges,this paper introduces an enhanced Unified Perceptual Parsing for Scene Understanding Network(UPerNet)tailored for rail surface defect detection.Notably,the Swin Transformer Tiny version(Swin-T)network,underpinned by the Transformer architecture,is employed for adept feature extraction.This approach capitalizes on the global information present in the image and sidesteps the issue of inductive preference.The model’s efficiency is further amplified by the windowbased self-attention,which minimizes the model’s parameter count.We implement the cross-GPU synchronized batch normalization(SyncBN)for gradient optimization and integrate the Lovász-hinge loss function to leverage pixel dependency relationships.Experimental evaluations underscore the efficacy of our improved UPerNet,with results demonstrating Pixel Accuracy(PA)scores of 91.39%and 93.35%,Intersection over Union(IoU)values of 83.69%and 87.58%,Dice Coefficients of 91.12%and 93.38%,and Precision metrics of 90.85%and 93.41%across two distinct datasets.An increment in detection accuracy was discernible.For further practical applicability,we deploy semantic segmentation of rail surface defects,leveraging connected component processing techniques to distinguish varied defects within the same frame.By computing the actual defect length and area,our deep learning methodology presents results that offer intuitive insights for railway maintenance professionals. 展开更多
关键词 Rail surface defects connected component analysis TRANSFORMER UPernet
下载PDF
Active components of Bupleuri Radix in the treatment of schizophrenia analyzed by network pharmacology and clinical verification
11
作者 Jiang Xiao Jun Guo +6 位作者 Xin-Yu Zheng Wen Sun Qiu-Xiang Ning Li Tang Jian-Ying Xiao Liang Li Ping Yang 《Traditional Medicine Research》 2023年第11期14-22,共9页
Background:Bupleuri Radix is a common Chinese medicinal material in traditional Chinese medicine.Currently,the therapeutic effect of treating schizophrenia is relatively well understood.However,there are fewer studies... Background:Bupleuri Radix is a common Chinese medicinal material in traditional Chinese medicine.Currently,the therapeutic effect of treating schizophrenia is relatively well understood.However,there are fewer studies examining the underlying mechanisms of its treatment.The objective of the study was to investigate the primary mechanisms of Bupleuri Radix in treating schizophrenia through network pharmacology and clinical validation.Method:Network pharmacology revealed possible molecular mechanisms,followed by clinical verification.Sixty-seven schizophrenia patients undergoing treatment at the Hunan Brain Hospital between October and November 2022 were recruited and randomly divided into the olanzapine group and the olanzapine+Bupleuri Radix group.Additionally,32 healthy people undergoing physical examinations during the same period were included as the control group.The patient’s positive and negative symptom scale scores were compared.qPCR was used to detect the mRNA expression levels of ESR1,mTOR,EIF4E,and SMAD4 in peripheral blood.Results:Through network pharmacological analysis,it was concluded in this study that Bupleuri Radix might regulate the mTOR,PI3K-Akt,and HIF-1 signaling pathways.Clinical experiments indicated that compared with before treatment,the positive and negative symptom scale scores and total scores of the two treatment groups were significantly decreased after treatment(P<0.01).In addition,the positive and negative symptom scale scores and total scores in the olanzapine+Bupleuri Radix group were significantly decreased(P<0.01)compared to the olanzapine group after treatment.Before treatment,ESR1 mRNA expression levels in peripheral blood were significantly higher in the two treatment groups than in the control group,whereas the mRNA expression levels of mTOR,EIF4E,and SMAD4 in peripheral blood were significantly lower(P<0.01).The mRNA expression levels of mTOR,EIF4E,and SMAD4 in peripheral blood were significantly higher after therapy than before treatment,whereas the mRNA expression levels of ESR1 in peripheral blood were significantly lower(P<0.01).After therapy,the olanzapine+Bupleuri Radix group’s mRNA expression levels of mTOR,EIF4E,and SMAD4 were significantly higher than those of the olanzapine group,whereas the mRNA expression levels of ESR1 were significantly lower(P<0.01).Conclusion:The mechanism of Bupleuri Radix’s therapeutic efficacy in schizophrenia may involve the up-regulation of mTOR,EIF4E,and SMAD4 mRNA expression and the down-regulation of ESR1 mRNA expression in peripheral blood. 展开更多
关键词 SCHIZOPHRENIA Bupleuri Radix network pharmacology clinical verification active components
下载PDF
Wireless Sensor Network-based Detection of Poisonous Gases Using Principal Component Analysis
12
作者 N.Dharini Jeevaa Katiravan S.M.Udhaya Sankar 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期249-264,共16页
This work utilizes a statistical approach of Principal Component Ana-lysis(PCA)towards the detection of Methane(CH_(4))-Carbon Monoxide(CO)Poi-soning occurring in coal mines,forestfires,drainage systems etc.where the ... This work utilizes a statistical approach of Principal Component Ana-lysis(PCA)towards the detection of Methane(CH_(4))-Carbon Monoxide(CO)Poi-soning occurring in coal mines,forestfires,drainage systems etc.where the CH_(4) and CO emissions are very high in closed buildings or confined spaces during oxi-dation processes.Both methane and carbon monoxide are highly toxic,colorless and odorless gases.Both of the gases have their own toxic levels to be detected.But during their combined presence,the toxicity of the either one goes unidentified may be due to their low levels which may lead to an explosion.By using PCA,the correlation of CO and CH_(4) data is carried out and by identifying the areas of high correlation(along the principal component axis)the explosion suppression action can be triggered earlier thus avoiding adverse effects of massive explosions.Wire-less Sensor Network is deployed and simulations are carried with heterogeneous sensors(Carbon Monoxide and Methane sensors)in NS-2 Mannasim framework.The rise in the value of CO even when CH_(4) is below the toxic level may become hazardous to the people around.Thus our proposed methodology will detect the combined presence of both the gases(CH_(4) and CO)and provide an early warning in order to avoid any human losses or toxic effects. 展开更多
关键词 Wireless sensor network principal component analysis carbon monoxide-methane poisoning confined spaces
下载PDF
Functional magnetic resonance imaging study of group independent components underpinning item responses to paranoid-depressive scale
13
作者 Drozdstoy Stoyanov Rositsa Paunova +3 位作者 Julian Dichev Sevdalina Kandilarova Vladimir Khorev Semen Kurkin 《World Journal of Clinical Cases》 SCIE 2023年第36期8458-8474,共17页
BACKGROUND Our study expand upon a large body of evidence in the field of neuropsychiatric imaging with cognitive,affective and behavioral tasks,adapted for the functional magnetic resonance imaging(MRI)(fMRI)experime... BACKGROUND Our study expand upon a large body of evidence in the field of neuropsychiatric imaging with cognitive,affective and behavioral tasks,adapted for the functional magnetic resonance imaging(MRI)(fMRI)experimental environment.There is sufficient evidence that common networks underpin activations in task-based fMRI across different mental disorders.AIM To investigate whether there exist specific neural circuits which underpin differ-ential item responses to depressive,paranoid and neutral items(DN)in patients respectively with schizophrenia(SCZ)and major depressive disorder(MDD).METHODS 60 patients were recruited with SCZ and MDD.All patients have been scanned on 3T magnetic resonance tomography platform with functional MRI paradigm,comprised of block design,including blocks with items from diagnostic paranoid(DP),depression specific(DS)and DN from general interest scale.We performed a two-sample t-test between the two groups-SCZ patients and depressive patients.Our purpose was to observe different brain networks which were activated during a specific condition of the task,respectively DS,DP,DN.RESULTS Several significant results are demonstrated in the comparison between SCZ and depressive groups while performing this task.We identified one component that is task-related and independent of condition(shared between all three conditions),composed by regions within the temporal(right superior and middle temporal gyri),frontal(left middle and inferior frontal gyri)and limbic/salience system(right anterior insula).Another com-ponent is related to both diagnostic specific conditions(DS and DP)e.g.It is shared between DEP and SCZ,and includes frontal motor/language and parietal areas.One specific component is modulated preferentially by to the DP condition,and is related mainly to prefrontal regions,whereas other two components are significantly modulated with the DS condition and include clusters within the default mode network such as posterior cingulate and precuneus,several occipital areas,including lingual and fusiform gyrus,as well as parahippocampal gyrus.Finally,component 12 appeared to be unique for the neutral condition.In addition,there have been determined circuits across components,which are either common,or distinct in the preferential processing of the sub-scales of the task.CONCLUSION This study has delivers further evidence in support of the model of trans-disciplinary cross-validation in psychiatry. 展开更多
关键词 Paranoid-depressive scale Functional magnetic resonance imaging Cross-validation Group independent component analysis Schizophrenia Depression
下载PDF
Integrated classification method of tight sandstone reservoir based on principal component analysise simulated annealing genetic algorithmefuzzy cluster means
14
作者 Bo-Han Wu Ran-Hong Xie +3 位作者 Li-Zhi Xiao Jiang-Feng Guo Guo-Wen Jin Jian-Wei Fu 《Petroleum Science》 SCIE EI CSCD 2023年第5期2747-2758,共12页
In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tig... In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method. 展开更多
关键词 Tight sandstone Integrated reservoir classification Principal component analysis Simulated annealing genetic algorithm Fuzzy cluster means
下载PDF
Discrimination of polysorbate 20 by high-performance liquid chromatography-charged aerosol detection and characterization for components by expanding compound database and library
15
作者 Shi-Qi Wang Xun Zhao +10 位作者 Li-Jun Zhang Yue-Mei Zhao Lei Chen Jin-Lin Zhang Bao-Cheng Wang Sheng Tang Tom Yuan Yaozuo Yuan Mei Zhang Hian Kee Lee Hai-Wei Shi 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第5期722-732,共11页
Analyzing polysorbate 20(PS20)composition and the impact of each component on stability and safety is crucial due to formulation variations and individual tolerance.The similar structures and polarities of PS20 compon... Analyzing polysorbate 20(PS20)composition and the impact of each component on stability and safety is crucial due to formulation variations and individual tolerance.The similar structures and polarities of PS20 components make accurate separation,identification,and quantification challenging.In this work,a high-resolution quantitative method was developed using single-dimensional high-performance liquid chromatography(HPLC)with charged aerosol detection(CAD)to separate 18 key components with multiple esters.The separated components were characterized by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UHPLC-Q-TOF-MS)with an identical gradient as the HPLC-CAD analysis.The polysorbate compound database and library were expanded over 7-time compared to the commercial database.The method investigated differences in PS20 samples from various origins and grades for different dosage forms to evaluate the composition-process relationship.UHPLC-Q-TOF-MS identified 1329 to 1511 compounds in 4 batches of PS20 from different sources.The method observed the impact of 4 degradation conditions on peak components,identifying stable components and their tendencies to change.HPLC-CAD and UHPLC-Q-TOF-MS results provided insights into fingerprint differences,distinguishing quasi products. 展开更多
关键词 Polysorbate 20 component DATABASE DISCRIMINATION Degradation
下载PDF
Multi-omics analyses provide insights into the evolutionary history and the synthesis of medicinal components of the Chinese wingnut
16
作者 Zi-Yan Zhang He-Xiao Xia +5 位作者 Meng-Jie Yuan Feng Gao Wen-Hua Bao Lan Jin Min Li Yong Li 《Plant Diversity》 SCIE CAS CSCD 2024年第3期309-320,共12页
Chinese wingnut(Pterocarya stenoptera)is a medicinally and economically important tree species within the family Juglandaceae.However,the lack of high-quality reference genome has hindered its in-depth research.In thi... Chinese wingnut(Pterocarya stenoptera)is a medicinally and economically important tree species within the family Juglandaceae.However,the lack of high-quality reference genome has hindered its in-depth research.In this study,we successfully assembled its chromosome-level genome and performed multiomics analyses to address its evolutionary history and synthesis of medicinal components.A thorough examination of genomes has uncovered a significant expansion in the Lateral Organ Boundaries Domain gene family among the winged group in Juglandaceae.This notable increase may be attributed to their frequent exposure to flood-prone environments.After further differentiation between Chinese wingnut and Cyclocarya paliurus,significant positive selection occurred on the genes of NADH dehydrogenase related to mitochondrial aerobic respiration in Chinese wingnut,enhancing its ability to cope with waterlogging stress.Comparative genomic analysis revealed Chinese wingnut evolved more unique genes related to arginine synthesis,potentially endowing it with a higher capacity to purify nutrient-rich water bodies.Expansion of terpene synthase families enables the production of increased quantities of terpenoid volatiles,potentially serving as an evolved defense mechanism against herbivorous insects.Through combined transcriptomic and metabolomic analysis,we identified the candidate genes involved in the synthesis of terpenoid volatiles.Our study offers essential genetic resources for Chinese wingnut,unveiling its evolutionary history and identifying key genes linked to the production of terpenoid volatiles. 展开更多
关键词 GENOME Medicinal components METABOLOME Pterocarya stenoptera TRANSCRIPTOME
下载PDF
Effects of main components on energy output characteristics of thermobaric explosive——A case study of typical formulations
17
作者 Yunfei Zhao Yaning Li +3 位作者 Zhiwei Han Peng Bao Jingyan Wang Boliang Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期205-216,共12页
As a kind of high-efficiency explosive with compound destructive capability, the energy output law of thermobaric explosives has been receiving great attention. In order to investigate the effects of main components o... As a kind of high-efficiency explosive with compound destructive capability, the energy output law of thermobaric explosives has been receiving great attention. In order to investigate the effects of main components on the explosive characteristics of thermobaric explosives, various high explosives and oxidants were selected to formulate five different types of thermobaric explosive. Then they were tested in both open space and closed space respectively. Pressure measurement system, high-speed camera,infrared thermal imager and multispectral temperature measurement system were used for pressure,temperature and fireball recording. The effects of different components on the explosive characteristics of thermobaric explosive were analyzed. The results showed that in open space, the overpressure is dominated by the high explosives content in the formulation. The addition of the oxidants will decrease the explosion overpressure but will increase the duration and overall brightness of the fireball. While in closed space, the quasi-static pressure formed after the explosion is positively correlated with the temperature and gas production. In addition, it was found that the differences in shell constraints can also alter the afterburning reaction of thermobaric explosives, thus affecting their energy output characteristics. PVC shell constraint obviously increases the overpressure and makes the fireball burn more violently. 展开更多
关键词 Thermobaric explosives componentS OVERPRESSURE FIREBALL Afterburning reaction
下载PDF
Effect of Planting Date on Yield and Yield Components of Grain Sorghum Hybrids
18
作者 Bandiougou Diawara Sory Diallo +2 位作者 Brahima Traore Scott Staggenbord Vara Prasad 《American Journal of Plant Sciences》 CAS 2024年第5期387-402,共16页
In Kansas, productivity of grain sorghum [Sorghum bicolor (L.) Moench] is affected by weather conditions at planting and during pollination. Planting date management and selection of hybrid maturity group can help to ... In Kansas, productivity of grain sorghum [Sorghum bicolor (L.) Moench] is affected by weather conditions at planting and during pollination. Planting date management and selection of hybrid maturity group can help to avoid severe environmental stresses during these sensitive stages. The hypothesis of the study was that late May planting improves grain sorghum yield and yield components compared with late June planting. The objectives of this research were to investigate the influence of planting dates yield and yield components of different grain sorghum hybrids, and to determine the optimal planting date and hybrid combination for maximum biomass and grains production. Three sorghum hybrids (early, medium, and late maturing) were planted in late May and late June without irrigation in Kansas at Manhattan/Ashland Bottom Research Station, and Hutchinson in 2010;and at Manhattan/North Farm and Hutchinson in 2011. Data on dry matter production, yield and yield components were collected. Grain yield and yield components were influenced by planting date depending on environmental conditions. At Manhattan (2010), greater grain yield, number of heads per plant, were obtained with late-June planting compared with late May planting, while at Hutchinson (2010) greater yield was obtained with late May planting for all hybrids. The yield component most affected at Hutchinson was the number of kernels∙panicle<sup>−1</sup> and plant density. Late-May planting was favorable for late maturing hybrid (P84G62) in all locations. However, the yield of early maturing hybrid (DKS 28-05) and medium maturing hybrid (DKS 37-07) was less affected by delayed planting. The effects of planting dates on yield and yield components of grain sorghum hybrids were found to be variable among hybrid maturity groups and locations. 展开更多
关键词 Sorghum [Sorghum bicolor (L.) Moench] Grain Yield Yield components
下载PDF
Simultaneous purification of minor components in natural products using twin-column recycling chromatography with a step solvent gradient
19
作者 Guangxia Jin Yuxue Wu Feng Wei 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期212-219,共8页
The isolation of minor components from complex natural product matrices presents a significant challenge in the field of purification science due to their low concentrations and the presence of structurally similar co... The isolation of minor components from complex natural product matrices presents a significant challenge in the field of purification science due to their low concentrations and the presence of structurally similar compounds.This study introduces an optimized twin-column recycling chromatography method for the efficient and simultaneous purification of these elusive constituents.By introducing water at a small flowing rate between the twin columns,a step solvent gradient is created,by which the leading edge of concentration band would migrate at a slower rate than the trailing edge as it flowing from the upstream to downstream column.Hence,the band broadening is counterbalanced,resulting in an enrichment effect for those minor components in separation process.Herein,two target substances,which showed similar peak position in high performance liquid chromatography(HPLC)and did not exceed 1.8%in crude paclitaxel were selected as target compounds for separation.By using the twin-column recycling chromatography with a step solvent gradient,a successful purification was achieved in getting the two with the purity almost 100%.We suggest this method is suitable for the separation of most components in natural produces,which shows higher precision and recovery rate compared with the common lab-operated separation ways for natural products(thin-layer chromatography and prep-HPLC). 展开更多
关键词 Solvent gradient Twin-column recycling chromatography PURIFICATION Minor component Natural products
下载PDF
Meter-Scale Thin-Walled Structure with Lattice Infill for Fuel Tank Supporting Component of Satellite:Multiscale Design and Experimental Verification
20
作者 Xiaoyu Zhang Huizhong Zeng +6 位作者 Shaohui Zhang Yan Zhang Mi Xiao Liping Liu Hao Zhou Hongyou Chai Liang Gao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期201-220,共20页
Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be f... Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be fabricated bymetallic additive manufacturing technique,such as selective laser melting(SLM).However,the maximum dimensions of actual structures are usually in a sub-meter scale,which results in restrictions on their appliance in aerospace and other fields.In this work,a meter-scale thin-walled structure with lattice infill is designed for the fuel tank supporting component of the satellite by integrating a self-supporting lattice into the thickness optimization of the thin-wall.The designed structure is fabricated by SLM of AlSi10Mg and cold metal transfer welding technique.Quasi-static mechanical tests and vibration tests are both conducted to verify the mechanical strength of the designed large-scale lattice thin-walled structure.The experimental results indicate that themeter-scale thin-walled structure with lattice infill could meet the dimension and lightweight requirements of most spacecrafts. 展开更多
关键词 Thin-walled structure lattice infill supporting component selective laser melting SATELLITE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部