s:Under The nonlinear optics condition the all-fiber optical bistability operation has been realized in an all-fiber resonator consisted of Er-dope fiber and optical fiber couplers.The experimental bistability thresho...s:Under The nonlinear optics condition the all-fiber optical bistability operation has been realized in an all-fiber resonator consisted of Er-dope fiber and optical fiber couplers.The experimental bistability threshold is consistent with the theory.展开更多
We disclosed the interiorly driven macroscopic Brownian motion behavior of self-powered liquid metal motors. Such tiny motors in millimeter scale move randomly at a velocity magnitude of centimeters per second in aque...We disclosed the interiorly driven macroscopic Brownian motion behavior of self-powered liquid metal motors. Such tiny motors in millimeter scale move randomly at a velocity magnitude of centimeters per second in aqueous alkaline solution, well resembling the classical Brownian motion. However, unlike the existing phenomena, where the particle motions were caused by collisions from the surrounding molecules, the current random liquid metal motions are internally enabled and self-powered, along with the colliding among neighboring motors, the substrate and the surrounding electrolyte molecules. Through uniformly dissolving only 1% (mass percentage) A1 into GaInl0, many tiny motors can be quickly fabricated and activated to take the Brownian-like random motions. Further, we introduced an experimental approach of using optical image contrast, which works just like the Wilson cloud chamber, to distinctively indicate the motor trajectory resulted from the generated hydrogen gas stream. A series of unusual complicated multi-phase fluid mechanics phenomena were observed. It was also identified that the main driving factor of the motors comes from the H2 bubbles generated at the bottom of these tiny motors, which is different from the large size self-fueled liquid metal machine. Several typical mechanisms for such unconventional Brownian-like motion phenomena were preliminarily interpreted.展开更多
文摘s:Under The nonlinear optics condition the all-fiber optical bistability operation has been realized in an all-fiber resonator consisted of Er-dope fiber and optical fiber couplers.The experimental bistability threshold is consistent with the theory.
文摘双层衍射光学元件能够在宽波段光谱范围内工作并具有较高的衍射效率。提出了工作在一定入射角范围内的双层衍射光学元件的复合带宽积分平均衍射效率的数学分析模型。设计了一种工作波段为0.4~0.9 μm的含有双层衍射光学元件的宽波段光学系统。其焦距为28mm,F/#为2,视场达到18°。该系统采用Petzval物镜结构,由四片透镜组成。在60lp/mm处,其调制传递函数(Modulation Transfer Function,MTF)大于0.67。所用双层衍射光学元件在0.4~0.9 μm波段内的带宽积分平均衍射效率高于91%。系统中入射到衍射面上的角度为0°~8.62°。该双层衍射光学元件的复合带宽积分平均衍射效率为97.36%。与传统的折射式宽波段光学系统相比,含有双层衍射光学元件的宽波段光学系统的结构更简单,分辨率更高。
基金supported by Research Funding of Chinese Academy of Sciences and partially by the National Natural Science Foundation of China(51376102)
文摘We disclosed the interiorly driven macroscopic Brownian motion behavior of self-powered liquid metal motors. Such tiny motors in millimeter scale move randomly at a velocity magnitude of centimeters per second in aqueous alkaline solution, well resembling the classical Brownian motion. However, unlike the existing phenomena, where the particle motions were caused by collisions from the surrounding molecules, the current random liquid metal motions are internally enabled and self-powered, along with the colliding among neighboring motors, the substrate and the surrounding electrolyte molecules. Through uniformly dissolving only 1% (mass percentage) A1 into GaInl0, many tiny motors can be quickly fabricated and activated to take the Brownian-like random motions. Further, we introduced an experimental approach of using optical image contrast, which works just like the Wilson cloud chamber, to distinctively indicate the motor trajectory resulted from the generated hydrogen gas stream. A series of unusual complicated multi-phase fluid mechanics phenomena were observed. It was also identified that the main driving factor of the motors comes from the H2 bubbles generated at the bottom of these tiny motors, which is different from the large size self-fueled liquid metal machine. Several typical mechanisms for such unconventional Brownian-like motion phenomena were preliminarily interpreted.