采用CALPHAD(CALculation of PHAse Diagrams)方法重新对Mg-Al-Gd三元系进行评估,获得一套自洽的热力学参数。用Mg_(x)(TM,Mg)_(6)(RE,Mg)_(8)热力学模型(TM=过渡金属,RE=稀土金属)描述长周期堆积有序相14H和18R。计算代表性的等温截面...采用CALPHAD(CALculation of PHAse Diagrams)方法重新对Mg-Al-Gd三元系进行评估,获得一套自洽的热力学参数。用Mg_(x)(TM,Mg)_(6)(RE,Mg)_(8)热力学模型(TM=过渡金属,RE=稀土金属)描述长周期堆积有序相14H和18R。计算代表性的等温截面、垂直截面、液相线投影图和相关的零变量反应,与实验数据进行比较,表明所得热力学参数的可靠性。绘制了整个三元体系的反应图,并对几种Mg-Al-Gd合金的Scheil凝固路径和相分数进行计算和分析,清楚地描述了凝固过程中各相的形成以及γ和LPSO相的相分数随Gd成分的变化,这些是影响Mg-Al-Gd合金的显微硬度、极限抗拉强度和屈服强度的重要因素。展开更多
A 3D stochastic modeling was presented to simulate the dendritic grains during solidification process of aluminum alloy. Shape functions were proposed in 2D and 3D to describe equiaxed dendritic shape. A growth model ...A 3D stochastic modeling was presented to simulate the dendritic grains during solidification process of aluminum alloy. Shape functions were proposed in 2D and 3D to describe equiaxed dendritic shape. A growth model was presented to describe the growth of a nucleated grain and the capturing of the neighboring cells. On growing, each grain continues to capture the nearest neighboring cells to form the final grain shape. If a neighboring cell has been captured by other grains, the growth along this direction stops, which can reflect the grains impingement phenomenon occurring in solidification process. 2D and 3D calculations were performed to simulate the evolution of equiaxed dendritic grains. In order to verify the modeling results, step shaped sample castings were cast in sand mold. The microstructure in various positions of the sample was observed. In addition the quantitative metallographic analysis also has been done to evaluate the grain size. Experimental and numerical results agree well.展开更多
Effects of the matrix properties,particle size distribution and interfacial matrix failure on the elastoplastic deformationbehavior in Al matrix composites reinforced by SiC particles with an average size of 5μm and ...Effects of the matrix properties,particle size distribution and interfacial matrix failure on the elastoplastic deformationbehavior in Al matrix composites reinforced by SiC particles with an average size of 5μm and volume fraction of 12%werequantitatively calculated by using the expanded effective assumption(EMA)model.The particle size distribution naturally bringsabout the variation of matrix properties and the interfacial matrix failure due to the presence of SiC particles.The theoretical resultscoincide well with those of the experiment.The current research indicates that the load transfer between matrix and reinforcements,grain refinement in matrix,and enhanced dislocation density originated from the thermal mismatch between SiC particles and Almatrix increase the flow stress of the composites,but the interfacial matrix failure is opposite.It also proves that the load transfer,grain refinement and dislocation strengthening are the main strengthening mechanisms,and the interfacial matrix failure and ductilefracture of matrix are the dominating fracture modes in the composites.The mechanical properties of the composites strongly dependon the metal matrix.展开更多
A self adjusting model was presented on the basis of the effect of temperature gradient on eutectic growth and a curved solid/liquid interface. Finite differential method was adopted to solve the model. The average la...A self adjusting model was presented on the basis of the effect of temperature gradient on eutectic growth and a curved solid/liquid interface. Finite differential method was adopted to solve the model. The average lamellar spacing of the Al Al 3Fe eutectic alloy and the content fields ahead of the solidifying interface under different growth rates were calculated. Directional solidification experiments were carried out in order to prove the modification of the modeling. The experimental results are in relatively good agreement with the calculations.展开更多
The geometry and electronic topology properties of Mg/Al hydrotalcite cluster models were comparatively investigated by means of density functional theory at GGA/DND levels.The results suggested that cluster model con...The geometry and electronic topology properties of Mg/Al hydrotalcite cluster models were comparatively investigated by means of density functional theory at GGA/DND levels.The results suggested that cluster model containing seven octahedral cations was the smallest size to be employed to simulate other properties.The fact that the n+ charge of cluster models containing n aluminum atoms can reflect electronic properties of anionic clay layer sheet.The bond lengths of clusters can be modified by terminating with or without OH-/H2O groups in terms of principle of bond order conservation.展开更多
A slightly modified central atoms model was proposed. The probabilities of various clusters with the central atoms and their nearest neighboring shells can be calculated neglecting the assumption of the parameter of e...A slightly modified central atoms model was proposed. The probabilities of various clusters with the central atoms and their nearest neighboring shells can be calculated neglecting the assumption of the parameter of energy in the central atoms model in proportion to the number of other atoms i (referred with the central atom). A parameter P α is proposed in this model, which equals to reciprocal of activity coefficient of α component, therefore, the new model can be understood easily. By this model, the Al Zn phase diagram and its thermodynamic properties were calculated, the results coincide with the experimental data.展开更多
The mechanism of zirconium poisoning on the grain-refining efficiency of an Al-Ti-B based grain refiner was studied. The experiment was conducted by melting Al-5Ti-1B and Al-3Zr master alloys together. The edge-to-edg...The mechanism of zirconium poisoning on the grain-refining efficiency of an Al-Ti-B based grain refiner was studied. The experiment was conducted by melting Al-5Ti-1B and Al-3Zr master alloys together. The edge-to-edge matching model was used to investigate and compare the orientation relationships between the binary intermetallic compounds present in the Al-Ti-B-Zr system. The results show that the poisoning effect probably results from the combination of Al3 Zr with Al3 Ti and the decreased amount of Ti solute, for Al3 Ti particles have good crystallographic relationships with Al3 Zr. Totally six orientation relationships may present between them, while they play vital roles in grain refinement. TiB2 particles appear to remain unchanged because of a bit large misfit. Only one orientation relationship may present between them to prevent Al3 Zr phase from forming on the surface of TiB2, though TiB2 is agglomerated. The theoretical calculation agrees well with the experimental results. The edge-to-edge matching model is proved to be a useful tool for discovering the orientation relationships between phases.展开更多
The statistical model for the fracture toughness of a modified Al-7Si-0.45Mg cast alloy has been proposed on the basis of analysis of the correlation between the size distribution of crack nuclei and Si particles and ...The statistical model for the fracture toughness of a modified Al-7Si-0.45Mg cast alloy has been proposed on the basis of analysis of the correlation between the size distribution of crack nuclei and Si particles and of the micromechanism of fracture.The suitable criterion of frac- ture toughness according to the model has been given.The model has found a good explana- tion for the fracture feature,fracture toughness and microstructure,and agreed with the ex- periments very well.展开更多
Recently, a condensing potential model was developed to evaluate the crystallization ability of bulk materials [Ye X X, Ming C, Hu Y C and Ning X J 2009 J. Chem. Phys. 130 164711 and Peng K, Ming C, Ye X X, Zhang W X,...Recently, a condensing potential model was developed to evaluate the crystallization ability of bulk materials [Ye X X, Ming C, Hu Y C and Ning X J 2009 J. Chem. Phys. 130 164711 and Peng K, Ming C, Ye X X, Zhang W X, Zhuang J and Ning X J 2011 Chem. Phys. Lett. 501 330], showing that the best temperature for single crystal growth is about0.6Tm, where Tm is the melting temperature, and for Ni–Al alloy, more than 6 wt% of Al-doping will badly reduce the crystallization ability. In order to verify these predictions, we fabricated Ni–Al films with different concentrations of Al on Si substrates at room temperature by pulsed laser deposition, and post-annealed the films at 833, 933, 1033(- 0.6Tm),1133, and 1233 K in vacuum furnace, respectively. The x-ray diffraction spectra show that annealing at 0.6Tm is indeed best for larger crystal grain formation, and the film crystallization ability remarkably declines with more than 6-wt% Al doping.展开更多
基金supported by the Natural Science Foundation of Hunan Province,China(No.2021JJ30672)the Science and Technology Project of Education Department of Hunan Province,China(No.22A0100)+1 种基金the National Natural Science Foundation of China(No.51627802)Xiangtan University Scientific Research Start-up Fund。
基金The financial supports from the National Key Laboratory of Science and Technology on High-strength Structural Materialsthe National Natural Science Foundation of China(No.51771235)。
文摘采用CALPHAD(CALculation of PHAse Diagrams)方法重新对Mg-Al-Gd三元系进行评估,获得一套自洽的热力学参数。用Mg_(x)(TM,Mg)_(6)(RE,Mg)_(8)热力学模型(TM=过渡金属,RE=稀土金属)描述长周期堆积有序相14H和18R。计算代表性的等温截面、垂直截面、液相线投影图和相关的零变量反应,与实验数据进行比较,表明所得热力学参数的可靠性。绘制了整个三元体系的反应图,并对几种Mg-Al-Gd合金的Scheil凝固路径和相分数进行计算和分析,清楚地描述了凝固过程中各相的形成以及γ和LPSO相的相分数随Gd成分的变化,这些是影响Mg-Al-Gd合金的显微硬度、极限抗拉强度和屈服强度的重要因素。
文摘A 3D stochastic modeling was presented to simulate the dendritic grains during solidification process of aluminum alloy. Shape functions were proposed in 2D and 3D to describe equiaxed dendritic shape. A growth model was presented to describe the growth of a nucleated grain and the capturing of the neighboring cells. On growing, each grain continues to capture the nearest neighboring cells to form the final grain shape. If a neighboring cell has been captured by other grains, the growth along this direction stops, which can reflect the grains impingement phenomenon occurring in solidification process. 2D and 3D calculations were performed to simulate the evolution of equiaxed dendritic grains. In order to verify the modeling results, step shaped sample castings were cast in sand mold. The microstructure in various positions of the sample was observed. In addition the quantitative metallographic analysis also has been done to evaluate the grain size. Experimental and numerical results agree well.
基金Project(10147207)supported by the National Natural Science Foundation of ChinaProject(2004DE4002)supported by Chongqing Commission of Science and Technology,China
文摘Effects of the matrix properties,particle size distribution and interfacial matrix failure on the elastoplastic deformationbehavior in Al matrix composites reinforced by SiC particles with an average size of 5μm and volume fraction of 12%werequantitatively calculated by using the expanded effective assumption(EMA)model.The particle size distribution naturally bringsabout the variation of matrix properties and the interfacial matrix failure due to the presence of SiC particles.The theoretical resultscoincide well with those of the experiment.The current research indicates that the load transfer between matrix and reinforcements,grain refinement in matrix,and enhanced dislocation density originated from the thermal mismatch between SiC particles and Almatrix increase the flow stress of the composites,but the interfacial matrix failure is opposite.It also proves that the load transfer,grain refinement and dislocation strengthening are the main strengthening mechanisms,and the interfacial matrix failure and ductilefracture of matrix are the dominating fracture modes in the composites.The mechanical properties of the composites strongly dependon the metal matrix.
文摘A self adjusting model was presented on the basis of the effect of temperature gradient on eutectic growth and a curved solid/liquid interface. Finite differential method was adopted to solve the model. The average lamellar spacing of the Al Al 3Fe eutectic alloy and the content fields ahead of the solidifying interface under different growth rates were calculated. Directional solidification experiments were carried out in order to prove the modification of the modeling. The experimental results are in relatively good agreement with the calculations.
基金supported by China University of Petroleum (East China) (grant 09CX04045A)
文摘The geometry and electronic topology properties of Mg/Al hydrotalcite cluster models were comparatively investigated by means of density functional theory at GGA/DND levels.The results suggested that cluster model containing seven octahedral cations was the smallest size to be employed to simulate other properties.The fact that the n+ charge of cluster models containing n aluminum atoms can reflect electronic properties of anionic clay layer sheet.The bond lengths of clusters can be modified by terminating with or without OH-/H2O groups in terms of principle of bond order conservation.
文摘A slightly modified central atoms model was proposed. The probabilities of various clusters with the central atoms and their nearest neighboring shells can be calculated neglecting the assumption of the parameter of energy in the central atoms model in proportion to the number of other atoms i (referred with the central atom). A parameter P α is proposed in this model, which equals to reciprocal of activity coefficient of α component, therefore, the new model can be understood easily. By this model, the Al Zn phase diagram and its thermodynamic properties were calculated, the results coincide with the experimental data.
基金Project(2012CB619504) supported by the National Basic Research Program of China
文摘The mechanism of zirconium poisoning on the grain-refining efficiency of an Al-Ti-B based grain refiner was studied. The experiment was conducted by melting Al-5Ti-1B and Al-3Zr master alloys together. The edge-to-edge matching model was used to investigate and compare the orientation relationships between the binary intermetallic compounds present in the Al-Ti-B-Zr system. The results show that the poisoning effect probably results from the combination of Al3 Zr with Al3 Ti and the decreased amount of Ti solute, for Al3 Ti particles have good crystallographic relationships with Al3 Zr. Totally six orientation relationships may present between them, while they play vital roles in grain refinement. TiB2 particles appear to remain unchanged because of a bit large misfit. Only one orientation relationship may present between them to prevent Al3 Zr phase from forming on the surface of TiB2, though TiB2 is agglomerated. The theoretical calculation agrees well with the experimental results. The edge-to-edge matching model is proved to be a useful tool for discovering the orientation relationships between phases.
文摘The statistical model for the fracture toughness of a modified Al-7Si-0.45Mg cast alloy has been proposed on the basis of analysis of the correlation between the size distribution of crack nuclei and Si particles and of the micromechanism of fracture.The suitable criterion of frac- ture toughness according to the model has been given.The model has found a good explana- tion for the fracture feature,fracture toughness and microstructure,and agreed with the ex- periments very well.
基金Project supported by the Specialized Research Fund for the Doctoral Program of Higher EducationChina(Grant No.20130071110018)the National Natural Science Foundation of China(Grant No.11274073)
文摘Recently, a condensing potential model was developed to evaluate the crystallization ability of bulk materials [Ye X X, Ming C, Hu Y C and Ning X J 2009 J. Chem. Phys. 130 164711 and Peng K, Ming C, Ye X X, Zhang W X, Zhuang J and Ning X J 2011 Chem. Phys. Lett. 501 330], showing that the best temperature for single crystal growth is about0.6Tm, where Tm is the melting temperature, and for Ni–Al alloy, more than 6 wt% of Al-doping will badly reduce the crystallization ability. In order to verify these predictions, we fabricated Ni–Al films with different concentrations of Al on Si substrates at room temperature by pulsed laser deposition, and post-annealed the films at 833, 933, 1033(- 0.6Tm),1133, and 1233 K in vacuum furnace, respectively. The x-ray diffraction spectra show that annealing at 0.6Tm is indeed best for larger crystal grain formation, and the film crystallization ability remarkably declines with more than 6-wt% Al doping.