期刊文献+
共找到502,321篇文章
< 1 2 250 >
每页显示 20 50 100
A Hybrid Dung Beetle Optimization Algorithm with Simulated Annealing for the Numerical Modeling of Asymmetric Wave Equations
1
作者 Wei Xu-ruo Bai Wen-lei +2 位作者 Liu Lu Li You-ming Wang Zhi-yang 《Applied Geophysics》 SCIE CSCD 2024年第3期513-527,618,共16页
In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two th... In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two theoretical branches of the GCM,the modified couple stress theory(M-CST)and the one-parameter second-strain-gradient theory,to form a novel asymmetric wave equation in a unified framework.Numerical modeling of the asymmetric wave equation in a unified framework accurately describes subsurface structures with vital implications for subsequent seismic wave inversion and imaging endeavors.However,employing finite-difference(FD)methods for numerical modeling may introduce numerical dispersion,adversely affecting the accuracy of numerical modeling.The design of an optimal FD operator is crucial for enhancing the accuracy of numerical modeling and emphasizing the scale effects.Therefore,this study devises a hybrid scheme called the dung beetle optimization(DBO)algorithm with a simulated annealing(SA)algorithm,denoted as the SA-based hybrid DBO(SDBO)algorithm.An FD operator optimization method under the SDBO algorithm was developed and applied to the numerical modeling of asymmetric wave equations in a unified framework.Integrating the DBO and SA algorithms mitigates the risk of convergence to a local extreme.The numerical dispersion outcomes underscore that the proposed SDBO algorithm yields FD operators with precision errors constrained to 0.5‱while encompassing a broader spectrum coverage.This result confirms the efficacy of the SDBO algorithm.Ultimately,the numerical modeling results demonstrate that the new FD method based on the SDBO algorithm effectively suppresses numerical dispersion and enhances the accuracy of elastic wave numerical modeling,thereby accentuating scale effects.This result is significant for extracting wavefield perturbations induced by complex microstructures in the medium and the analysis of scale effects. 展开更多
关键词 FINITE-DIFFERENCE Asymmetric wave equation numerical modeling DBO algorithm SA algorithm
下载PDF
Operation optimization of prefabricated light modular radiant heating system:Thermal resistance analysis and numerical study
2
作者 LI Yao HU Ru-kun +4 位作者 XIN Li XUE Jie HUANG Fei XIA Jian-wei YANG Xiao-hu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1983-1997,共15页
The utilization of prefabricated light modular radiant heating system has demonstrated significant increases in heat transfer efficiency and energy conservation capabilities.Within prefabricated building construction,... The utilization of prefabricated light modular radiant heating system has demonstrated significant increases in heat transfer efficiency and energy conservation capabilities.Within prefabricated building construction,this new heating method presents an opportunity for the development of comprehensive facilities.The parameters for evaluating the effectiveness of such a system are the upper surface layer’s heat flux and temperature.In this paper,thermal resistance analysis calculation based on a simplified model for this unique radiant heating system analysis is presented with the heat transfer mechanism’s evaluation.The results obtained from thermal resistance analysis calculation and numerical simulation indicate that the thermal resistance analysis method is highly accurate with temperature discrepancies ranging from 0.44℃ to−0.44℃ and a heat flux discrepancy of less than 7.54%,which can meet the requirements of practical engineering applications,suggesting a foundation for the prefabricated radiant heating system. 展开更多
关键词 radiant heating system thermal resistance analysis simplified model numerical simulation heat flux temperatur
下载PDF
Comparative Analysis for Evaluating Wind Energy Resources Using Intelligent Optimization Algorithms and Numerical Methods
3
作者 Musaed Alrashidi 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期491-513,共23页
Statistical distributions are used to model wind speed,and the twoparameters Weibull distribution has proven its effectiveness at characterizing wind speed.Accurate estimation of Weibull parameters,the scale(c)and sha... Statistical distributions are used to model wind speed,and the twoparameters Weibull distribution has proven its effectiveness at characterizing wind speed.Accurate estimation of Weibull parameters,the scale(c)and shape(k),is crucial in describing the actual wind speed data and evaluating the wind energy potential.Therefore,this study compares the most common conventional numerical(CN)estimation methods and the recent intelligent optimization algorithms(IOA)to show how precise estimation of c and k affects the wind energy resource assessments.In addition,this study conducts technical and economic feasibility studies for five sites in the northern part of Saudi Arabia,namely Aljouf,Rafha,Tabuk,Turaif,and Yanbo.Results exhibit that IOAs have better performance in attaining optimal Weibull parameters and provided an adequate description of the observed wind speed data.Also,with six wind turbine technologies rating between 1 and 3MW,the technical and economic assessment results reveal that the CN methods tend to overestimate the energy output and underestimate the cost of energy($/kWh)compared to the assessments by IOAs.The energy cost analyses show that Turaif is the windiest site,with an electricity cost of$0.016906/kWh.The highest wind energy output is obtained with the wind turbine having a rated power of 2.5 MW at all considered sites with electricity costs not exceeding$0.02739/kWh.Finally,the outcomes of this study exhibit the potential of wind energy in Saudi Arabia,and its environmental goals can be acquired by harvesting wind energy. 展开更多
关键词 Weibull distribution conventional numerical methods intelligent optimization algorithms wind resource exploration and exploitation cost of energy($/kWh)
下载PDF
Optimization Design of the Multi-Layer Cross-Sectional Layout of An Umbilical Based on the GA-GLM 被引量:1
4
作者 YANG Zhi-xun YIN Xu +5 位作者 FAN Zhi-rui YAN Jun LU Yu-cheng SU Qi MAO Yandong WANG Hua-lin 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期247-254,共8页
Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components direct... Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry. 展开更多
关键词 UMBILICAL cross-sectional layout MULTI-LAYERS GA-GLM optimization
下载PDF
Enhanced Harris Hawks Optimization Integrated with Coot Bird Optimization for Solving Continuous Numerical Optimization Problems
5
作者 Hao Cui Yanling Guo +4 位作者 Yaning Xiao Yangwei Wang Jian Li Yapeng Zhang Haoyu Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1635-1675,共41页
Harris Hawks Optimization(HHO)is a novel meta-heuristic algorithm that imitates the predation characteristics of Harris Hawk and combines Lévy flight to solve complex multidimensional problems.Nevertheless,the ba... Harris Hawks Optimization(HHO)is a novel meta-heuristic algorithm that imitates the predation characteristics of Harris Hawk and combines Lévy flight to solve complex multidimensional problems.Nevertheless,the basic HHO algorithm still has certain limitations,including the tendency to fall into the local optima and poor convergence accuracy.Coot Bird Optimization(CBO)is another new swarm-based optimization algorithm.CBO originates from the regular and irregular motion of a bird called Coot on the water’s surface.Although the framework of CBO is slightly complicated,it has outstanding exploration potential and excellent capability to avoid falling into local optimal solutions.This paper proposes a novel enhanced hybrid algorithm based on the basic HHO and CBO named Enhanced Harris Hawks Optimization Integrated with Coot Bird Optimization(EHHOCBO).EHHOCBO can provide higher-quality solutions for numerical optimization problems.It first embeds the leadership mechanism of CBO into the population initialization process of HHO.This way can take full advantage of the valuable solution information to provide a good foundation for the global search of the hybrid algorithm.Secondly,the Ensemble Mutation Strategy(EMS)is introduced to generate the mutant candidate positions for consideration,further improving the hybrid algorithm’s exploration trend and population diversity.To further reduce the likelihood of falling into the local optima and speed up the convergence,Refracted Opposition-Based Learning(ROBL)is adopted to update the current optimal solution in the swarm.Using 23 classical benchmark functions and the IEEE CEC2017 test suite,the performance of the proposed EHHOCBO is comprehensively evaluated and compared with eight other basic meta-heuristic algorithms and six improved variants.Experimental results show that EHHOCBO can achieve better solution accuracy,faster convergence speed,and a more robust ability to jump out of local optima than other advanced optimizers in most test cases.Finally,EHHOCBOis applied to address four engineering design problems.Our findings indicate that the proposed method also provides satisfactory performance regarding the convergence accuracy of the optimal global solution. 展开更多
关键词 Harris hawks optimization coot bird optimization hybrid ensemblemutation strategy refracted opposition-based learning
下载PDF
Numerical Study on Reduction in Aerodynamic Drag and Noise of High-Speed Pantograph 被引量:1
6
作者 Deng Qin Xing Du +1 位作者 Tian Li Jiye Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2155-2173,共19页
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t... Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise. 展开更多
关键词 High-speed pantograph aerodynamic drag aerodynamic noise REDUCTION optimizing
下载PDF
Cooperative User-Scheduling and Resource Allocation Optimization for Intelligent Reflecting Surface Enhanced LEO Satellite Communication 被引量:1
7
作者 Meng Meng Bo Hu +1 位作者 Shanzhi Chen Jianyin Zhang 《China Communications》 SCIE CSCD 2024年第2期227-244,共18页
Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO sate... Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput. 展开更多
关键词 convex optimization intelligent reflecting surface LEO satellite communication OFDM
下载PDF
A Numerical Study on Supersonic Combustion Optimization Based on the Streamwise Vortex-Couple Method
8
作者 Hao Tian Yongkang Zheng Hanxin Zhang 《Fluid Dynamics & Materials Processing》 EI 2023年第1期207-222,共16页
In this paper,some typical methods to promote mixing in supersonic combustion are reviewed,and the fluid-dynamic mechanism underpinning the development of the supersonic shear layer in the presence of a streamwise vor... In this paper,some typical methods to promote mixing in supersonic combustion are reviewed,and the fluid-dynamic mechanism underpinning the development of the supersonic shear layer in the presence of a streamwise vortex is analyzed through computational fluid dynamics.It is proven that the streamwise vortex-couple method is an excellent approach to enhance mixing.A specific combustor design is proposed accordingly. 展开更多
关键词 Supersonic combustion streamwise vortex numerical simulation
下载PDF
A methodology for damage evaluation of underground tunnels subjected to static loading using numerical modeling 被引量:1
9
作者 Shahriyar Heidarzadeh Ali Saeidi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1993-2005,共13页
We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensiti... We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels. 展开更多
关键词 Fragility curves Underground tunnels Vulnerability functions Brittle damage FLAC3D numerical modeling
下载PDF
Numerical manifold method for thermo-mechanical coupling simulation of fractured rock mass 被引量:1
10
作者 Jiawei Liang Defu Tong +3 位作者 Fei Tan Xiongwei Yi Junpeng Zou Jiahe Lv 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1977-1992,共16页
As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accura... As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses. 展开更多
关键词 Heat conduction Fractured rock mass Crack propagation Galerkin variation numerical manifold method(NMM)
下载PDF
Multi-Material Topology Optimization for Spatial-Varying Porous Structures 被引量:1
11
作者 Chengwan Zhang Kai Long +4 位作者 Zhuo Chen Xiaoyu Yang Feiyu Lu Jinhua Zhang Zunyi Duan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期369-390,共22页
This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volu... This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures. 展开更多
关键词 Topology optimization porous structures local volume fraction augmented lagrangian multiple materials
下载PDF
Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting:From catalytic mechanism and synthesis method to optimization design 被引量:1
12
作者 Rongrong Deng Mengwei Guo +1 位作者 Chaowu Wang Qibo Zhang 《Nano Materials Science》 EI CAS CSCD 2024年第2期139-173,共35页
Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high... Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed. 展开更多
关键词 Co-P electrocatalysts Water splitting Hydrogen production Catalytic mechanism Synthesis technique optimization design
下载PDF
Experimental and Numerical Investigation on High-Pressure Centrifugal Pumps:Ultimate Pressure Formulation,Fatigue Life Assessment and Topological Optimization of Discharge Section
13
作者 Abdourahamane Salifou Adam Hatem Mrad +1 位作者 Haykel Marouani Yasser Fouad 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2845-2865,共21页
A high percentage of failure in pump elements originates from fatigue.This study focuses on the discharge section behavior,made of ductile iron,under dynamic load.An experimental protocol is established to collect the... A high percentage of failure in pump elements originates from fatigue.This study focuses on the discharge section behavior,made of ductile iron,under dynamic load.An experimental protocol is established to collect the strain under pressurization and depressurization tests at specific locations.These experimental results are used to formulate the ultimate pressure expression function of the strain and the lateral surface of the discharge section and to validate finite element modeling.Fe-Safe is then used to assess the fatigue life cycle using different types of fatigue criteria(Coffin-Manson,Morrow,Goodman,and Soderberg).When the pressure is under 3000 PSI,pumps have an unlimited service life of 107 cycles,regardless of the criterion.However,for a pressure of 3555 PSI,only the Morrow criterion denotes a significant decrease in fatigue life cycles,as it considers the average stress.The topological optimization is then applied to the most critical pump model(with the lowest fatigue life cycle)to increase its fatigue life.Using the solid isotropic material with a penalization approach,the Abaqus Topology OptimizationModule is employed.The goal is to reduce the strain energy density while keeping the volume within bounds.According to the findings,a 5%volume reduction causes the strain energy density to decrease from 1.06 to 0.66106 J/m^(3).According to Morrow,the fatigue life cycle at 3,555 PSI is 782,425 longer than the initial 309,742 cycles. 展开更多
关键词 Centrifugal pump ultimate pressure fatigue life topological optimization
下载PDF
Wind-sand flow simulation and radius optimization of highway embankment under different vertical curve radius
14
作者 LI Liangying LI Qi +2 位作者 WANG Xu XIN Guowei WANG Zhenqiang 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2533-2546,共14页
It is of great practical value to explore the correlation between the vertical curve radius of desert highway and the increase of sand accumulation in local lines,and to select the appropriate vertical curve radius fo... It is of great practical value to explore the correlation between the vertical curve radius of desert highway and the increase of sand accumulation in local lines,and to select the appropriate vertical curve radius for reducing the risk of sand accumulation.In this study,three-dimensional models of desert highway embankments with different vertical curve radii were constructed,and Fluent software was used to simulate the wind-sand flow field and sand accumulation distribution of vertical curve embankments.The results show that:(1)Along the direction of the road,the concave and the convex vertical curve embankments have the effect of collecting and diverging the wind-sand flow,respectively.When the radius of the concave vertical curve is 3000 m,5000 m,8000 m,10000 m and 20000 m,the wind velocity in the middle of the vertical curve is 31.76%,22.58%,10.78%,10.53%and 10.44%,higher than that at both ends.When the radius of the convex vertical curve is 6500 m,8000 m,10000 m,20000 m and 30000 m,the wind velocity at both ends of the vertical curve is 14.06%,9.99%,6.14%,3.22%and 2.41%,higher than that in the middle.The diversion effect also decreases with the increase of the radius.(2)The conductivity of the concave and convex vertical curve embankments with different radii is greater than 1,which is the sediment transport roadbed.The conductivity increases with the increase of radius and gradually tends to be stable.When the radius of the concave and convex vertical curves reaches 8000 m and 20000 m respectively,the phenomenon of sand accumulation is no longer serious.Under the same radius condition,the concave vertical curve embankment is more prone to sand accumulation than the convex one.(3)Considering the strength of the collection and diversion of the vertical curve embankment with different radii,and the sand accumulation of the vertical curve embankment in the desert section of Wuma Expressway,the radius of the concave vertical curve is not less than 8000 m,and the radius of the convex vertical curve is not less than 20000 m,which can effectively reduce the sand accumulation of the vertical curve embankment.In the desert highway area,the research results of this paper can provide reference for the design of vertical curve to ensure the safe operation of desert highway. 展开更多
关键词 Highway engineering Vertical curve numerical simulation Embankment wind-sand flow Radius optimization
下载PDF
Optimization of Gas Production from Hydrate-Bearing Sediments with Fluctuation Characteristics
15
作者 LI Yaobin XU Tianfu +3 位作者 XIN Xin YU Han YUAN Yilong ZHU Huixing 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期618-632,共15页
As an important source of low-carbon,clean fossil energy,natural gas hydrate plays an important role in improving the global energy consumption structure.Developing the hydrate industry in the South China Sea is impor... As an important source of low-carbon,clean fossil energy,natural gas hydrate plays an important role in improving the global energy consumption structure.Developing the hydrate industry in the South China Sea is important to achieving‘carbon peak and carbon neutrality’goals as soon as possible.Deep-water areas subjected to the action of long-term stress and tectonic movement have developed complex and volatile terrains,and as such,the morphologies of hydrate-bearing sediments(HBSs)fluctuate correspondingly.The key to numerically simulating HBS morphologies is the establishment of the conceptual model,which represents the objective and real description of the actual geological body.However,current numerical simulation models have characterized HBSs into horizontal strata without considering the fluctuation characteristics.Simply representing the HBS as a horizontal element reduces simulation accuracy.Therefore,the commonly used horizontal HBS model and a model considering the HBS’s fluctuation characteristics with the data of the SH2 site in the Shenhu Sea area were first constructed in this paper.Then,their production behaviors were compared,and the huge impact of the fluctuation characteristics on HBS production was determined.On this basis,the key parameters affecting the depressurization production of the fluctuating HBSs were studied and optimized.The research results show that the fluctuation characteristics have an obvious influence on the hydrate production of HBSs by affecting their temperatures and pressure distributions,as well as the transmission of the pressure drop and methane gas discharge.Furthermore,the results show that the gas productivity of fluctuating HBSs was about 5%less than that of horizontal HBSs.By optimizing the depressurization amplitude,well length,and layout location of vertical wells,the productivity of fluctuating HBSs increased by about 56.6%. 展开更多
关键词 natural gas hydrate numerical simulation fluctuation characteristics depressurization production production well optimization
下载PDF
Parametric Optimization of Wheel Spoke Structure for Drag Reduction of an Ahmed Body
16
作者 Huihui Zhai Dongqi Jiao Haichao Zhou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期955-975,共21页
The wheels have a considerable influence on the aerodynamic properties and can contribute up to 25%of the total drag on modern vehicles.In this study,the effect of the wheel spoke structure on the aerodynamic performa... The wheels have a considerable influence on the aerodynamic properties and can contribute up to 25%of the total drag on modern vehicles.In this study,the effect of the wheel spoke structure on the aerodynamic performance of the isolated wheel is investigated.Subsequently,the 35°Ahmed body with an optimized spoke structure is used to analyze the flow behavior and the mechanism of drag reduction.The Fluent software is employed for this investigation,with an inlet velocity of 40 m/s.The accuracy of the numerical study is validated by comparing it with experimental results obtained from the classical Ahmed model.To gain a clearer understanding of the effects of the wheel spoke parameters on the aerodynamics of both the wheel and Ahmedmodel,and five design variables are proposed:the fillet angleα,the inside arc radius R1,the outside radius R2,and the same length of the chord L1 and L2.These variables characterize the wheel spoke structure.The Optimal Latin Hypercube designmethod is utilized to conduct the experimental design.Based on the simulation results of various wheel spoke designs,the Kriging model and the adaptive simulated annealing algorithm is selected to optimize the design parameters.The objective is to achieve the best combination for maximum drag reduction.It is indicated that the optimized spoke structure resulted in amaximum drag reduction of 5.7%and 4.7%for the drag coefficient of the isolated wheel and Ahmed body,respectively.The drag reduction is primarily attributed to changes in the flow state around the wheel,which suppressed separation bubbles.Additionally,it influenced the boundary layer thickness around the car body and reduced the turbulent kinetic energy in the wake flow.These effects collectively contributed to the observed drag reduction. 展开更多
关键词 Ahmed body wheel spoke design parameter optimization drag reduction numerical simulation
下载PDF
Optimal Design of High-Speed Partial Flow Pumps using Orthogonal Tests and Numerical Simulations
17
作者 Jiaqiong Wang Tao Yang +2 位作者 Chen Hu Yu Zhang Ling Zhou 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1203-1218,共16页
To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second... To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model. 展开更多
关键词 HIGH-SPEED partial flow pump orthogonal test optimal design numerical calculation
下载PDF
Hydrocarbon gas huff-n-puff optimization of multiple horizontal wells with complex fracture networks in the M unconventional reservoir
18
作者 Hao-Chuan Zhang Yong Tang +5 位作者 You-Wei He Yong Qin Jian-Hong Luo Yu Sun Ning Wang De-Qiang Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1018-1031,共14页
The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective meth... The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective method to improve oil recovery factor from unconventional oil reservoirs. Hydrocarbon gas huff-n-puff becomes preferable when the CO_(2) source is limited. However, the impact of complex fracture networks and well interference on the EOR performance of multiple MFHWs is still unclear. The optimal gas huff-n-puff parameters are significant for enhancing oil recovery. This work aims to optimize the hydrocarbon gas injection and production parameters for multiple MFHWs with complex fracture networks in unconventional oil reservoirs. Firstly, the numerical model based on unstructured grids is developed to characterize the complex fracture networks and capture the dynamic fracture features.Secondly, the PVT phase behavior simulation was carried out to provide the fluid model for numerical simulation. Thirdly, the optimal parameters for hydrocarbon gas huff-n-puff were obtained. Finally, the dominant factors of hydrocarbon gas huff-n-puff under complex fracture networks are obtained by fuzzy mathematical method. Results reveal that the current pressure of hydrocarbon gas injection can achieve miscible displacement. The optimal injection and production parameters are obtained by single-factor analysis to analyze the effect of individual parameter. Gas injection time is the dominant factor of hydrocarbon gas huff-n-puff in unconventional oil reservoirs with complex fracture networks. This work can offer engineers guidance for hydrocarbon gas huff-n-puff of multiple MFHWs considering the complex fracture networks. 展开更多
关键词 Unconventional oil reservoir Complex fracture network Hydrocarbon gas huff-n-puff Parameter optimization numerical simulation
下载PDF
Horizontal well spacing optimization and gas injection simulation for the ultra-low-permeability Yongjin reservoir
19
作者 Yao Zhang Chengyuan Lv +3 位作者 Zengmin Lun Shuxia Zhao Yingfu He Ran Gao 《Energy Geoscience》 EI 2024年第1期196-203,共8页
Optimal spacing for vertical wells can be effectively predicted with several published methods,but methods suitable for assessing the proper horizontal well spacing are rare.This work proposes a method for calculating... Optimal spacing for vertical wells can be effectively predicted with several published methods,but methods suitable for assessing the proper horizontal well spacing are rare.This work proposes a method for calculating the optimal horizontal well spacing for an ultra-low permeability reservoir e the Yongjin reservoir in the Juggar Basin,northwestern China.The result shows that a spacing of 640m is the most economical for the development of the reservoir.To better develop the reservoir,simulation approaches are used and a new model is built based on the calculated well spacing.Since the reservoir has an ultralow permeability,gas injection is regarded as the preferred enhanced oil recovery(EOR)method.Injection of different gases including carbon dioxide,methane,nitrogen and mixed gas are modelled.The results show that carbon dioxide injection is the most efficient and economical for the development of the reservoir.However,if the reservoir produces enough methane,reinjecting methane is even better than injecting carbon dioxide. 展开更多
关键词 Ultra-low-permeability reservoir Well spacing optimization numerical simulation Gas injection EOR
下载PDF
Multi-objective optimization and evaluation of supercritical CO_(2) Brayton cycle for nuclear power generation 被引量:1
20
作者 Guo-Peng Yu Yong-Feng Cheng +1 位作者 Na Zhang Ping-Jian Ming 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期183-209,共27页
The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayto... The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully. 展开更多
关键词 Supercritical CO_(2)Brayton cycle Nuclear power generation Thermo-economic analysis Multi-objective optimization Decision-making methods
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部