Chinese cabbage(Brassica rapa ssp. pekinensis) has a long cultivation history and is one of the vegetable crops with the largest cultivation area in China. However, salt stress severely damages photosynthesis and horm...Chinese cabbage(Brassica rapa ssp. pekinensis) has a long cultivation history and is one of the vegetable crops with the largest cultivation area in China. However, salt stress severely damages photosynthesis and hormone metabolism, nutritional balances, and results in ion toxicity in plants. To better understand the mechanisms of salt-induced growth inhibition in Chinese cabbage, RNA-seq and physiological index determination were conducted to explore the impacts of salt stress on carbon cycle metabolism and photosynthesis in Chinese cabbage. Here, we found that the number of thylakoids and grana lamellae and the content of starch granules and chlorophyll in the leaves of Chinese cabbage under salt stress showed a time-dependent response, first increasing and then decreasing. Chinese cabbage increased the transcript levels of genes related to the photosynthetic apparatus and carbon metabolism under salt stress, probably in an attempt to alleviate damage to the photosynthetic system and enhance CO_(2) fixation and energy metabolism. The transcription of genes related to starch and sucrose synthesis and degradation were also enhanced;this might have been an attempt to maintain intracellular osmotic pressure by increasing soluble sugar concentrations. Soluble sugars could also be used as potential reactive oxygen species(ROS) scavengers, in concert with peroxidase(POD)enzymes, to eliminate ROS that accumulate during metabolic processes. Our study characterizes the synergistic response network of carbon metabolism and photosynthesis under salt stress.展开更多
Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR...Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR)family,comprising highly conserved ligand-gated ion channels,regulates plant growth and development in response to stress.In this study,11 members of the VvGLR gene family in grapes were identified using whole-genome sequence analysis.Bioinformatic methods were employed to analyze the basic physical and chemical properties,phylogenetic trees,conserved domains,motifs,expression patterns,and evolutionary relationships.Phylogenetic and collinear analyses revealed that the VvGLRs were divided into three subgroups,showing the high conservation of the grape GLR family.These members exhibited 2 glutamate receptor binding regions(GABAb and GluR)and 3-4 transmembrane regions(M1,M2,M3,and M4).Real-time quantitative PCR analysis demonstrated the sensitivity of all VvGLRs to low temperature and salt stress.Subsequent localization studies in Nicotiana tabacum verified that VvGLR3.1 and VvGLR3.2 proteins were located on the cell membrane and cell nucleus.Additionally,yeast transformation experiments confirmed the functionality of VvGLR3.1 and VvGLR3.2 in response to low temperature and salt stress.Thesefindings highlight the significant role of the GLR family,a highly conserved group of ion channels,in enhancing grape stress resistance.This study offers new insights into the grape GLR gene family,providing fundamental knowledge for further functional analysis and breeding of stress-resistant grapevines.展开更多
Great potential of underground gas/energy storage in salt caverns seems to be a promising solution to support renewable energy.In the underground storage method,the operating cycle unfortunately may reach up to daily ...Great potential of underground gas/energy storage in salt caverns seems to be a promising solution to support renewable energy.In the underground storage method,the operating cycle unfortunately may reach up to daily or even hourly,which generates complicated pressures on the salt cavern.Furthermore,the mechanical behavior of rock salt may change and present distinct failure characteristics under different stress states,which affects the performance of salt cavern during the time period of full service.To reproduce a similar loading condition on the cavern surrounding rock mass,the cyclic triaxial loading/unloading tests are performed on the rock salt to explore the mechanical transition behavior and failure characteristics under different confinement.Experimental results show that the rock salt samples pre-sent a diffused shear failure band with significant bulges at certain locations in low confining pressure conditions(e.g.5 MPa,10 MPa and 15 MPa),which is closely related to crystal misorientation and grain boundary sliding.Under the elevated confinement(e.g.20 MPa,30 MPa and 40 MPa),the dilation band dominates the failure mechanism,where the large-size halite crystals are crushed to be smaller size and new pores are developing.The failure transition mechanism revealed in the paper provides additional insight into the mechanical performance of salt caverns influenced by complicated stress states.展开更多
Salt stress is a typical abiotic stress in plants that causes slow growth,stunting,and reduced yield and fruit quality.Fertilization is necessary to ensure proper crop growth.However,the effect of fertilization on sal...Salt stress is a typical abiotic stress in plants that causes slow growth,stunting,and reduced yield and fruit quality.Fertilization is necessary to ensure proper crop growth.However,the effect of fertilization on salt tolerance in grapevine is unclear.In this study,we investigated the effect of nitrogen fertilizer(0.01 and 0.1 mol L^(-1)NH_(4)NO_(3))application on the salt(200 mmol L^(-1)NaCl)tolerance of grapevine based on physiological indices,and transcriptomic and metabolomic analyses.The results revealed that 0.01 mol L^(-1)NH_(4)NO_(3) supplementation significantly reduced the accumulation of superoxide anion(O_(2)^(-)·),enhanced the activities of superoxide dismutase(SOD)and peroxidase(POD),and improved the levels of ascorbic acid(AsA)and glutathione(GSH)in grape leaves compared to salt treatment alone.Specifically,joint transcriptome and metabolome analyses showed that the differentially expressed genes(DEGs)and differentially accumulated metabolites(DAMs)were significantly enriched in the flavonoid biosynthesis pathway(ko00941)and the flavone and flavonol biosynthesis pathway(ko00944).In particular,the relative content of quercetin(C00389)was markedly regulated by salt and nitrogen.Further analysis revealed that exogenous foliar application of quercetin improved the SOD and POD activities,increased the AsA and GSH contents,and reduced the H_(2)O_(2) and O_(2)^(-)·contents.Meanwhile,10 hub DEGs,which had high Pearson correlations(R^(2)>0.9)with quercetin,were repressed by nitrogen.In conclusion,all the results indicated that moderate nitrogen and quercetin application under salt stress enhanced the antioxidant system defense response,thus providing a new perspective for improving salt tolerance in grapes.展开更多
The investigation of the response mechanisms of Cyperus esculentus to water and salt stresses is crucial for the enhancement of the productivity of saline soils.Previous studies have indicated that plant hormones,anti...The investigation of the response mechanisms of Cyperus esculentus to water and salt stresses is crucial for the enhancement of the productivity of saline soils.Previous studies have indicated that plant hormones,antioxidant systems,and osmoregulation may contribute to the stabilization of yield.However,the contributions and interactions of these mechanisms remain poorly understood under combined water and salt stress in natural environments.A dual-factor(salt and water)orthogonal test was used to investigate the growth and biochemical responses of C.esculentus,under combined salt and water stress in a field experiment conducted on a typical saline area in northern China.The findings reveal that C.esculentus adjusted its biomass allocation strategies and activated hormone responses,antioxidant system,and osmoregulation mechanisms to maintain stable yield.Due to the negative synergism when salt and water stress coexist,the homogeneous limitations of both are weakened.Thus,the key to maintaining yields under combined water and salt stress may depend on indirectly enhancing tolerance to oxidative damage through abscisic acid,rather than focusing on accumulating low molecular weight osmoregulants and antioxidant enzymes to directly alleviate homogeneous limitations.Also,under combined salt and water stress,insufficient irrigation may have a greater impact on morphological characteristics than high salinity.The above results contribute to a deeper understanding of the process of adapting C.esculentus to combinedsaltandwaterstress.展开更多
Rice is a crucial food crop globally.Soil salt stress has adverse effects on the physiology and biochemistry of rice,leading to ionic toxicity and disrupted metabolism.Research aimed at improving salt tolerance and un...Rice is a crucial food crop globally.Soil salt stress has adverse effects on the physiology and biochemistry of rice,leading to ionic toxicity and disrupted metabolism.Research aimed at improving salt tolerance and understanding its underlying mechanisms in rice is becoming increasingly important.Phytohormones are crucial in managing rice’s reaction to salt stress by controlling its physiological and biochemical functions.Some phytohormones can improve salt tolerance in rice by affecting gene programming,protein expression,and salt stress signaling,thereby helping rice adapt to salt-stressed environments.This review highlights recent advancements in understanding how various phytohormones-such as abscisic acid(ABA),auxin(IAA),cytokinins(CKs),jasmonates(JA),gibberellins(GAs),melatonin(MT),salicylic acid(SA),ethylene(ETHY)and brassinosteroids(BRs)-help mitigate the detrimental effects of salt stress in rice.Additionally,we explore the current challenges and future research directions for utilizing exogenous phytohormone regulators to boost rice’s resistance to salt stress.展开更多
Salt stress is one of the most harmful environmental stresses in recent times and represents a significant threat to food security. Soil salinization is caused by spontaneous natural processes of mineral dissolution a...Salt stress is one of the most harmful environmental stresses in recent times and represents a significant threat to food security. Soil salinization is caused by spontaneous natural processes of mineral dissolution and human activities such as inappropriate irrigation practices. Natural geological progressions like weathering of rocks, arid climate, and higher evaporation, as well as anthropogenic activities, including the use of brackish water for irrigation, and poor tillage operations, are the foremost causes of soil salinization. Typical characteristics of saline soils are salt stress, high pH, and lack of organic carbon, as well as low availability of nutrients. Disruption of precipitation patterns as well as high average annual temperatures due to climate change additionally negatively affects the process of soil salinization. Productivity and ability to support crop growth are reduced on saline soil. Salinity-induced stress reduces plant growth by modulating the antioxidative system and nutrient orchestration. The aim of this work is to show that the mentioned problems can be alleviated in several ways such as the addition of biochar, exogenous application of several elicitors, seed priming, etc. Research has shown that the addition of biochar can significantly improve the recovery of saline soil. The addition of biochar has no significant effect on soil pH, while the cation exchange capacity of the soil increased by 17%, and the electrical conductivity of the saturated paste extract decreased by 13.2% (depends on the initial salinity and the type of biochar raw material). Moreover, biochar enriched with silicon increases the resistance of bananas to salt stress. In addition, exogenous application of several elicitors helps plants to alleviate stress by inducing stress-related physicochemical and molecular changes (selenium, sulfur, silicon, salicylic acid). Finally, seed priming showed positive effects on metabolomics, proteomics and growth of plants subjected to abiotic stress. Priming usually involves immersing the seed in a solution for a period of time to induce physiological and metabolic progression prior to germination.展开更多
Rice direct seeding technology is an appealing alternative to traditional transplanting because it conserves labor and irrigation resources.Nevertheless,there are two main issues,salt stress and alkaline stress,which ...Rice direct seeding technology is an appealing alternative to traditional transplanting because it conserves labor and irrigation resources.Nevertheless,there are two main issues,salt stress and alkaline stress,which contribute to poor emergence and seedling growth,thereby preventing the widespread adoption and application of this technique in the Ningxia Region of China.Therefore,to determine whether germination can be promoted by mixed-oligosaccharide(KP)priming(in which seeds are soaked in a KP solution before sowing)under salt and alkaline stress,a proteomics study was performed.KP-priming significantly mitigated abiotic stress,such as salt and alkaline stress,by inhibiting root elongation,ultimately improving seedling establishment.By comparing the proteomics analyses,we found that energy metabolic pathway was a vital factor in KP-priming,which explains the alleviation of salt and alkaline stress.Key proteins involved in starch mobilization,pyruvate mobilization,and ATP synthesis,were up-regulated by KP-priming,significantly blocking salt and alkaline-triggered starch accumulation while enhancing pyruvate metabolism.KP-priming also up-regulated ATP synthase to improve energy efficiency,thereby improving ATP production.In addition,it enhanced antioxidant enzymatic activities and reduced the accumulation of reactive oxygen species.All of these factors contributed to a better understanding of the energy regulatory pathway enhanced by KP-priming,which mediated the promotion of growth under salt and alkaline conditions.Thus,this study demonstrated that KP-priming can improve rice seed germination under salt and alkaline stress by altering energy metabolism.展开更多
Melatonin and abscisic acid,as major plant hormones,play important roles in the physiological and biochemical activities of crops,but the interaction between the two under salt stress is not yet clear.This study inves...Melatonin and abscisic acid,as major plant hormones,play important roles in the physiological and biochemical activities of crops,but the interaction between the two under salt stress is not yet clear.This study investigated the endogenous levels of melatonin and abscisic acid in rice by using exogenous melatonin,abscisic acid,and their synthetic inhibitors,and examined their interactions under salt stress.The research results indicate that melatonin and abscisic acid can improve rice salt tolerance.Melatonin alleviated the salt sensitivity caused by abscisic acid deficiency,increased antioxidant enzyme activity and antioxidant content in rice treated with abscisic acid synth-esis inhibitors,and reduced total reactive oxygen species content and thiobarbituric acid reactive substance accu-mulation.Melatonin also increased the activity of key photosynthetic enzymes and the content of photosynthetic pigments,maintaining the parameters of photosynthetic gas exchange and chlorophyllfluorescence.In summary,melatonin alleviated the effects of abscisic acid deficiency on photosynthesis and antioxidant systems in rice and improved salt tolerance.This study is beneficial for expanding the understanding of melatonin regulation of crop salt tolerance.展开更多
Activity of bc1 complex kinase(ABC1K)is an atypical protein kinase(aPK)that plays a crucial role in plant mitochondrial and plastid stress responses,but little is known about the responses of ABC1Ks to stress in cotto...Activity of bc1 complex kinase(ABC1K)is an atypical protein kinase(aPK)that plays a crucial role in plant mitochondrial and plastid stress responses,but little is known about the responses of ABC1Ks to stress in cotton(Gossypium spp.).Here,we identified 40 ABC1Ks in upland cotton(Gossypium hirsutum L.)and found that the Gh ABC1Ks were unevenly distributed across 17 chromosomes.The GhABC1K family members included 35 paralogous gene pairs and were expanded by segmental duplication.The GhABC1K promoter sequences contained diverse cis-acting regulatory elements relevant to hormone or stress responses.The qRT-PCR results revealed that most Gh ABC1Ks were upregulated by exposure to different stresses.Gh ABC1K2-A05 and Gh ABC1K12-A07 expression levels were upregulated by at least three stress treatments.These genes were further functionally characterized by virus-induced gene silencing(VIGS).Compared with the controls,the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced cotton lines exhibited higher malondialdehyde(MDA)contents,lower catalase(CAT),peroxidase(POD)and superoxide dismutase(SOD)activities and reduced chlorophyll and soluble sugar contents under NaCl and PEG stress.In addition,the expression levels of six stress marker genes(Gh DREB2A,Gh SOS1,Gh CIPK6,Gh SOS2,Gh WRKY33,and Gh RD29A)were significantly downregulated after stress in the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced lines.The results indicate that knockdown of Gh ABC1K2-A05 and Gh ABC1K12-A07 make cotton more sensitive to salt and PEG stress.These findings can provide valuable information for intensive studies of Gh ABC1Ks in the responses and resistance of cotton to abiotic stresses.展开更多
Salt stress inhibits plant growth and affects the biosynthesis of its secondary metabolites.Flavonoids are natural compounds that possess many important biological activities,playing a significant role in the medicina...Salt stress inhibits plant growth and affects the biosynthesis of its secondary metabolites.Flavonoids are natural compounds that possess many important biological activities,playing a significant role in the medicinal activity of Eucommia ulmoides(E.ulmoides).To investigate the mechanism by which salt stress affects the biosynthesis of flavonoids in E.ulmoides,a comprehensive analysis of metabolomics and transcriptomics was conducted.The results indicated that salt stress led to the wilting and darkening of E.ulmoides leaves,accompanied by a decrease in chlorophyll levels,and significantly induced malondialdehyde(MDA)and relative electrical conductivity.During salt stress,most metabolites in the flavonoid biosynthesis pathway of E.ulmoides were upregulated,indicating that flavonoid biosynthesis is likely the main induced pathway under salt stress.Among them,secondary metabolites such as 6-Hydroxyluteolin and Quercetin are likely key metabolites induced by salt stress.The correlation analysis of transcriptomics and metabolomics revealed that EuSHT is a hub gene induced by salt stress,promoting the production of flavonoids such as 6-Hydroxyluteolin.The co-expression network showed a strong positive correlation between EuSHT and the biosynthesis of 6-Hydroxyluteolin and Quercetin,while it exhibited a negative correlation with Catechin biosynthesis.The branches leading to Luteolin and Dihydroquercetin are likely the main pathways for flavonoid compound biosynthesis in the plant stress response during salt stress.The results of this study provided a preliminary mechanism of secondary metabolites such as flavonoids in the medicinal plant E.ulmoides induced by salt stress and provided new theoretical support for discussing the mechanism of plant stress response.It also provided useful information for subsequent exploration of resistance genes in E.ulmoides.展开更多
Background:Aldehyde dehydrogenase(ALDH)genes constitute an important family of supergenes that play key roles in synthesizing various biomolecules and maintaining cellular homeostasis by catalyzing the oxidation of al...Background:Aldehyde dehydrogenase(ALDH)genes constitute an important family of supergenes that play key roles in synthesizing various biomolecules and maintaining cellular homeostasis by catalyzing the oxidation of aldehyde products.With climate change increasing the exposure of plants to abiotic stresses such as salt and drought,ALDH genes have been identified as important contributors to stress tolerance.In particular,they help to reduce stress-induced lipid peroxidation.Objectives:This study aims to identify and characterize members of the ALDH supergene family in Phaseolus vulgaris through a genome-wide bioinformatic analysis and investigate their role in response to abiotic stressors such as drought and salt stress.Methods:Genome-wide identification of 26 ALDH genes in P.vulgaris was performed using bioinformatics tools.The identified ALDH proteins were ana-lyzed for molecular weight,amino acid number,and exon number.Phylogenetic analysis was performed to clas-sify P.vulgaris,Arabidopsis thaliana,and Glycine max ALDH proteins into different groups.Strong links between these genes and functions related to growth,development,stress responses,and hormone signaling were identified by cis-element analysis in promoter regions.In silico expression,analysis was performed to assess gene expression levels in different plant tissues.Results:RT-qPCR results showed that the expression of ALDH genes was signif-icantly altered under drought and salt stress in beans.This study provides a comprehensive characterization of the ALDH supergene family in P.vulgaris,highlighting their potential role in abiotic stress tolerance.Conclusion:Thesefindings provide a basis for future research on the functional roles of ALDH genes in enhancing plant resis-tance to environmental stressors.展开更多
Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice ...Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region–specific,particularly involving the corticolimbic system,including the ventral tegmental area,nucleus accumbens,prefrontal cortex,amygdala,and hippocampus.Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology.In this review,we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression.We focused on associated molecular pathways and neural circuits,with special attention to the brain-derived neurotrophic factor–tropomyosin receptor kinase B signaling pathway and the ventral tegmental area–nucleus accumbens dopamine circuit.We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature,severity,and duration of stress,especially in the above-mentioned brain regions of the corticolimbic system.Therefore,BDNF might be a biological indicator regulating stress-related processes in various brain regions.展开更多
[Objectives]This study was conducted to improve crop yield and select excellent wheat varieties.[Methods]Wheat seedlings were treated with different concentrations of NaCl solution,and the activities of superoxide dis...[Objectives]This study was conducted to improve crop yield and select excellent wheat varieties.[Methods]Wheat seedlings were treated with different concentrations of NaCl solution,and the activities of superoxide dismutase(SOD)and peroxidase(POD)and the content changes of malondialdehyde(MDA)in the leaves of seedlings were determined.A control group(distilled water)and three treatment groups(NaCl concentrations of 1,2 and 3 mmol/L)were set up.When the wheat seedlings grew to two leaves and one heart,they should be treated with different concentrations of NaCl solution(the wheat seedlings grew uniformly,and 20 ml of each NaCl concentration was used for treatment of wheat).When the wheat seedlings grew to four leaves and one heart under stress,samples were taken separately,once every 2 d,for three times,with 5 g of leaves each time.The SOD and POD activities and MDA content of seedlings in the control group and treatment groups were determined,and related protein sequences were analyzed by bioinformatics,including signal peptide prediction,transmembrane domain prediction,phosphorylation prediction and protein structure prediction.[Results]Under NaCl stress,the growth rates of seedling length and root length of wheat decreased obviously,and SOD and POD in leaves decreased,while the MDA content in leaves after treatment increased compared with the control group.SOD had no signal peptide,while POD had signal peptides and a transmembrane region.SOD and POD were different in terms of secondary and tertiary structures and the number of phosphorylation sites.[Conclusions]These results lays a solid theoretical foundation and application prospect for the study on salt tolerance mechanism of wheat seedlings in the later stage.展开更多
Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre...Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.展开更多
Salt stress is a major abiotic stress limiting plant growth and yield. In the present study, the effects of exogenous H_(2)O_(2) on the reactive oxygen species(ROS) metabolism and the antioxidant system in leaves of N...Salt stress is a major abiotic stress limiting plant growth and yield. In the present study, the effects of exogenous H_(2)O_(2) on the reactive oxygen species(ROS) metabolism and the antioxidant system in leaves of Nitralia tangutorum Bobr. under salt stress were studied. N. tangutorum seedlings were subjected to 200 mmol·L^(-1) NaCl treatment with or without the exogenous application of H_(2)O_(2) for 7 days. The results showed that NaCl stress significantly increased the relative conductivity, the contents of thiobarbituric acid reactive substances(TBARS) and ROS(H_(2)O_(2) and O_(2)^(·-)), as well as promoted the activities of antioxidant enzymes including superoxide dismutase(SOD), peroxidase(POD), catalase(CAT), and ascorbate peroxidase(APX) in N. tangutorum leaves. In addition, exogenous H_(2)O_(2) decreased the relative conductivity, the contents of TBARS, H_(2)O_(2) and O_(2)^(·-), while further enhanced the activities of antioxidant enzymes. These results indicated that H_(2)O_(2) effectively alleviated the adverse effects of NaCl stress on N. tangutorum through the regulation of ROS metabolism.展开更多
Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types...Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types of neurotransmitters. Our previous results have shown that disco-interacting protein 2 homolog A(Dip2a) knockout mice exhibit brain development disorders and abnormal amino acid metabolism in serum. This suggests that DIP2A is involved in the metabolism of amino acid–associated neurotransmitters. Therefore, we performed targeted neurotransmitter metabolomics analysis and found that Dip2a deficiency caused abnormal metabolism of tryptophan and thyroxine in the basolateral amygdala and medial prefrontal cortex. In addition, acute restraint stress induced a decrease in 5-hydroxytryptamine in the basolateral amygdala. Additionally, Dip2a was abundantly expressed in excitatory neurons of the basolateral amygdala, and deletion of Dip2a in these neurons resulted in hopelessness-like behavior in the tail suspension test. Altogether, these findings demonstrate that DIP2A in the basolateral amygdala may be involved in the regulation of stress susceptibility. This provides critical evidence implicating a role of DIP2A in affective disorders.展开更多
Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototox...Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototoxic,and idiopathic sudden sensorineural are other less common types of acquired hearing loss.The etiology of these conditions is complex and multi-fa ctorial involving an interplay of genetic and environmental factors.Oxidative stress has recently been proposed as a likely linking cause in most types of acquired sensorineural hearing loss.Short non-coding RNA sequences known as microRNAs(miRNAs)have increasingly been shown to play a role in cellular hypoxia and oxidative stress responses including promoting an apoptotic response.Sensory hair cell death is a central histopathological finding in sensorineural hearing loss.As these cells do not regenerate in humans,it underlies the irreversibility of human age-related hearing loss.Ovid EMBASE,Ovid MEDLINE,Web of Science Core Collection,and ClinicalTrials.gov databases over the period August 1,2018 to July 31,2023 were searched with"hearing loss,""hypoxamiRs,""hypoxia,""microRNAs,""ischemia,"and"oxidative stress"text words for English language primary study publications or registered clinical trials.Registe red clinical trials known to the senior author we re also assessed.A total of 222studies were thus identified.After excluding duplicates,editorials,retra ctions,secondary research studies,and non-English language articles,39 primary studies and clinical trials underwent full-text screening.This resulted in 11 animal,in vitro,and/or human subject journal articles and 8 registered clinical trial database entries which form the basis of this narrative review.MiRNAs miR-34a and miR-29b levels increase with age in mice.These miRNAs were demonstrated in human neuroblastoma and murine cochlear cell lines to target Sirtuin 1/peroxisome proliferato r-activated receptor gamma coactivator-1-alpha(SIRT1/P GC-1α),SIRT1p53,and SIRT1/hypoxia-inducible factor 1-alpha signaling pathways resulting in increased apoptosis.Furthermore,hypoxia and oxidative stress had a similar adve rse apoptotic effect,which was inhibited by resve ratrol and a myocardial inhibitorassociated transcript,a miR-29b competing endogenous mRNA.Gentamicin reduced miR-182-5p levels and increased cochlear oxidative stress and cell death in mice-an effect that was corrected by inner ear stem cell-derived exosomes.There is ongoing work seeking to determine if these findings can be effectively translated to humans.展开更多
BACKGROUND Revisiting the epidemiology of posttraumatic stress symptoms(PTSSs)among university students during the coronavirus disease 2019(COVID-19)pandemic as well as understanding the mental health help-seeking beh...BACKGROUND Revisiting the epidemiology of posttraumatic stress symptoms(PTSSs)among university students during the coronavirus disease 2019(COVID-19)pandemic as well as understanding the mental health help-seeking behavior of individuals with PTSSs has critical implications for public mental health strategies in future medical pandemics.AIM To investigate the prevalence and correlates of PTSSs among university students during the first wave of the COVID-19 pandemic in China and to examine mental health help-seeking behaviors among these students.METHODS A total of 2507 Chinese university students were recruited via snowball sampling.The students completed the Seven-item Screening Scale for Post-traumatic Stress Disorder during the first wave of the COVID-19 pandemic in China.Sociodemo-graphic characteristics,pandemic-related characteristics,and mental health help-seeking behaviors of students with PTSSs were also collected.RESULTS The prevalence of PTSSs among the participants was 28.0%.Seven significant correlates of PTSSs were identified(odds ratio=1.23-3.65,P≤0.024):Female sex,being 19 years old or older,living with others or alone,a low level of family economic status,fair or poor interpersonal relationships,severe or very severe local pandemic,and having family members diagnosed with COVID-19.However,only 3.28%of the students with PTSSs reported seeking help from mental health specialists.Among the 23 students who sought help from mental health specialists,13 opted for online or telephone-based psychological consultation.CONCLUSION Our data suggest that there was a high risk of PTSSs among university students and a high level of unmet mental health needs during the COVID-19 pandemic.The delivery of mental health services online or via telephone is a promising approach to address these unmet needs.展开更多
BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current statu...BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current status of family rearing,parental stress,and behavioral and emotional problems of preschool children and to analyze the mediating effect of the current status of family rearing on parental stress and behavioral/emo-tional problems.METHODS We use convenience sampling to select 258 preschool children in the physical examination center of our hospital from October 2021 to September 2023.The children and their parents were evaluated using a questionnaire survey.Pearson's correlation was used to analyze the correlation between child behavioral and emotional problems and parental stress and family rearing,and the structural equation model was constructed to test the mediating effect.RESULTS The score for behavioral/emotional problems of 258 preschool children was(27.54±3.63),the score for parental stress was(87.64±11.34),and the score for parental family rearing was(31.54±5.24).There was a positive correlation between the behavioral and emotional problems of the children and the“hostile/mandatory”parenting style;meanwhile,showed a negative correlation with the“support/participation”parenting style(all P<0.05).The intermediary effect value between the family upbringing of parents in parental stress and children's behavior problems was 29.89%.CONCLUSION Parental family upbringing has a mediating effect between parental stress and behavioral and emotional problems of children.Despite paying attention to the behavioral and emotional problems of preschool-age children,clinical medical staff should provide correct and reasonable parenting advice to their parents to promote the mental health of preschool-age children.展开更多
基金financially supported by the Natural Science Foundation of Hebei Province-Innovation Group Research Project(Grant No.C2020204111)the National Natural Science Foundation of China(Grant No.31930098)+3 种基金the Science Fund for Distinguished Young Scholars of Hebei Province(Grant No.C2021204049)the Hebei Province Outstanding Youth Fund(Grant No.BJ2021024)the Hebei Provincial Key Research Projects(21326344D)Hebei International Joint Research Base of Modern Agricultural Biotechnology.
文摘Chinese cabbage(Brassica rapa ssp. pekinensis) has a long cultivation history and is one of the vegetable crops with the largest cultivation area in China. However, salt stress severely damages photosynthesis and hormone metabolism, nutritional balances, and results in ion toxicity in plants. To better understand the mechanisms of salt-induced growth inhibition in Chinese cabbage, RNA-seq and physiological index determination were conducted to explore the impacts of salt stress on carbon cycle metabolism and photosynthesis in Chinese cabbage. Here, we found that the number of thylakoids and grana lamellae and the content of starch granules and chlorophyll in the leaves of Chinese cabbage under salt stress showed a time-dependent response, first increasing and then decreasing. Chinese cabbage increased the transcript levels of genes related to the photosynthetic apparatus and carbon metabolism under salt stress, probably in an attempt to alleviate damage to the photosynthetic system and enhance CO_(2) fixation and energy metabolism. The transcription of genes related to starch and sucrose synthesis and degradation were also enhanced;this might have been an attempt to maintain intracellular osmotic pressure by increasing soluble sugar concentrations. Soluble sugars could also be used as potential reactive oxygen species(ROS) scavengers, in concert with peroxidase(POD)enzymes, to eliminate ROS that accumulate during metabolic processes. Our study characterizes the synergistic response network of carbon metabolism and photosynthesis under salt stress.
基金This research was funded by the Natural Science Foundation of Shandong Province of China(ZR2022MC144).
文摘Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR)family,comprising highly conserved ligand-gated ion channels,regulates plant growth and development in response to stress.In this study,11 members of the VvGLR gene family in grapes were identified using whole-genome sequence analysis.Bioinformatic methods were employed to analyze the basic physical and chemical properties,phylogenetic trees,conserved domains,motifs,expression patterns,and evolutionary relationships.Phylogenetic and collinear analyses revealed that the VvGLRs were divided into three subgroups,showing the high conservation of the grape GLR family.These members exhibited 2 glutamate receptor binding regions(GABAb and GluR)and 3-4 transmembrane regions(M1,M2,M3,and M4).Real-time quantitative PCR analysis demonstrated the sensitivity of all VvGLRs to low temperature and salt stress.Subsequent localization studies in Nicotiana tabacum verified that VvGLR3.1 and VvGLR3.2 proteins were located on the cell membrane and cell nucleus.Additionally,yeast transformation experiments confirmed the functionality of VvGLR3.1 and VvGLR3.2 in response to low temperature and salt stress.Thesefindings highlight the significant role of the GLR family,a highly conserved group of ion channels,in enhancing grape stress resistance.This study offers new insights into the grape GLR gene family,providing fundamental knowledge for further functional analysis and breeding of stress-resistant grapevines.
基金This research was financially supported by the Science and Technology Department of Sichuan Province Project,China(Grant Nos.2022YFSY0007,2021YFH0010)the National Scientific Science Foundation of China(Grant No.U20A20266).
文摘Great potential of underground gas/energy storage in salt caverns seems to be a promising solution to support renewable energy.In the underground storage method,the operating cycle unfortunately may reach up to daily or even hourly,which generates complicated pressures on the salt cavern.Furthermore,the mechanical behavior of rock salt may change and present distinct failure characteristics under different stress states,which affects the performance of salt cavern during the time period of full service.To reproduce a similar loading condition on the cavern surrounding rock mass,the cyclic triaxial loading/unloading tests are performed on the rock salt to explore the mechanical transition behavior and failure characteristics under different confinement.Experimental results show that the rock salt samples pre-sent a diffused shear failure band with significant bulges at certain locations in low confining pressure conditions(e.g.5 MPa,10 MPa and 15 MPa),which is closely related to crystal misorientation and grain boundary sliding.Under the elevated confinement(e.g.20 MPa,30 MPa and 40 MPa),the dilation band dominates the failure mechanism,where the large-size halite crystals are crushed to be smaller size and new pores are developing.The failure transition mechanism revealed in the paper provides additional insight into the mechanical performance of salt caverns influenced by complicated stress states.
基金supported by the Key Talent Project of Gansu Provincial Party Committee Organization Department Funding,China(2023RCXM23)the Industrial Support of Gansu Provincial Department of Education Funding,China(2021CYZC-55)the Key Research and Development Projects of Gansu Provincial Funding,China(21YF5NA090)。
文摘Salt stress is a typical abiotic stress in plants that causes slow growth,stunting,and reduced yield and fruit quality.Fertilization is necessary to ensure proper crop growth.However,the effect of fertilization on salt tolerance in grapevine is unclear.In this study,we investigated the effect of nitrogen fertilizer(0.01 and 0.1 mol L^(-1)NH_(4)NO_(3))application on the salt(200 mmol L^(-1)NaCl)tolerance of grapevine based on physiological indices,and transcriptomic and metabolomic analyses.The results revealed that 0.01 mol L^(-1)NH_(4)NO_(3) supplementation significantly reduced the accumulation of superoxide anion(O_(2)^(-)·),enhanced the activities of superoxide dismutase(SOD)and peroxidase(POD),and improved the levels of ascorbic acid(AsA)and glutathione(GSH)in grape leaves compared to salt treatment alone.Specifically,joint transcriptome and metabolome analyses showed that the differentially expressed genes(DEGs)and differentially accumulated metabolites(DAMs)were significantly enriched in the flavonoid biosynthesis pathway(ko00941)and the flavone and flavonol biosynthesis pathway(ko00944).In particular,the relative content of quercetin(C00389)was markedly regulated by salt and nitrogen.Further analysis revealed that exogenous foliar application of quercetin improved the SOD and POD activities,increased the AsA and GSH contents,and reduced the H_(2)O_(2) and O_(2)^(-)·contents.Meanwhile,10 hub DEGs,which had high Pearson correlations(R^(2)>0.9)with quercetin,were repressed by nitrogen.In conclusion,all the results indicated that moderate nitrogen and quercetin application under salt stress enhanced the antioxidant system defense response,thus providing a new perspective for improving salt tolerance in grapes.
基金supported by the National Natural Science Foundation of China(51909266)the National Agricultural Major Science and Technology Project(NK2022180401-1)the Project of Joint Research Institute of China Agricultural University in Aksu。
文摘The investigation of the response mechanisms of Cyperus esculentus to water and salt stresses is crucial for the enhancement of the productivity of saline soils.Previous studies have indicated that plant hormones,antioxidant systems,and osmoregulation may contribute to the stabilization of yield.However,the contributions and interactions of these mechanisms remain poorly understood under combined water and salt stress in natural environments.A dual-factor(salt and water)orthogonal test was used to investigate the growth and biochemical responses of C.esculentus,under combined salt and water stress in a field experiment conducted on a typical saline area in northern China.The findings reveal that C.esculentus adjusted its biomass allocation strategies and activated hormone responses,antioxidant system,and osmoregulation mechanisms to maintain stable yield.Due to the negative synergism when salt and water stress coexist,the homogeneous limitations of both are weakened.Thus,the key to maintaining yields under combined water and salt stress may depend on indirectly enhancing tolerance to oxidative damage through abscisic acid,rather than focusing on accumulating low molecular weight osmoregulants and antioxidant enzymes to directly alleviate homogeneous limitations.Also,under combined salt and water stress,insufficient irrigation may have a greater impact on morphological characteristics than high salinity.The above results contribute to a deeper understanding of the process of adapting C.esculentus to combinedsaltandwaterstress.
基金supported by the Basic Research Fund of Weifang Institute of Science and Technology under Grant No.KJRC2023047.
文摘Rice is a crucial food crop globally.Soil salt stress has adverse effects on the physiology and biochemistry of rice,leading to ionic toxicity and disrupted metabolism.Research aimed at improving salt tolerance and understanding its underlying mechanisms in rice is becoming increasingly important.Phytohormones are crucial in managing rice’s reaction to salt stress by controlling its physiological and biochemical functions.Some phytohormones can improve salt tolerance in rice by affecting gene programming,protein expression,and salt stress signaling,thereby helping rice adapt to salt-stressed environments.This review highlights recent advancements in understanding how various phytohormones-such as abscisic acid(ABA),auxin(IAA),cytokinins(CKs),jasmonates(JA),gibberellins(GAs),melatonin(MT),salicylic acid(SA),ethylene(ETHY)and brassinosteroids(BRs)-help mitigate the detrimental effects of salt stress in rice.Additionally,we explore the current challenges and future research directions for utilizing exogenous phytohormone regulators to boost rice’s resistance to salt stress.
文摘Salt stress is one of the most harmful environmental stresses in recent times and represents a significant threat to food security. Soil salinization is caused by spontaneous natural processes of mineral dissolution and human activities such as inappropriate irrigation practices. Natural geological progressions like weathering of rocks, arid climate, and higher evaporation, as well as anthropogenic activities, including the use of brackish water for irrigation, and poor tillage operations, are the foremost causes of soil salinization. Typical characteristics of saline soils are salt stress, high pH, and lack of organic carbon, as well as low availability of nutrients. Disruption of precipitation patterns as well as high average annual temperatures due to climate change additionally negatively affects the process of soil salinization. Productivity and ability to support crop growth are reduced on saline soil. Salinity-induced stress reduces plant growth by modulating the antioxidative system and nutrient orchestration. The aim of this work is to show that the mentioned problems can be alleviated in several ways such as the addition of biochar, exogenous application of several elicitors, seed priming, etc. Research has shown that the addition of biochar can significantly improve the recovery of saline soil. The addition of biochar has no significant effect on soil pH, while the cation exchange capacity of the soil increased by 17%, and the electrical conductivity of the saturated paste extract decreased by 13.2% (depends on the initial salinity and the type of biochar raw material). Moreover, biochar enriched with silicon increases the resistance of bananas to salt stress. In addition, exogenous application of several elicitors helps plants to alleviate stress by inducing stress-related physicochemical and molecular changes (selenium, sulfur, silicon, salicylic acid). Finally, seed priming showed positive effects on metabolomics, proteomics and growth of plants subjected to abiotic stress. Priming usually involves immersing the seed in a solution for a period of time to induce physiological and metabolic progression prior to germination.
基金supported by the National Key Research and Development Program of China (Grant No.2019YFE0197100)the Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences。
文摘Rice direct seeding technology is an appealing alternative to traditional transplanting because it conserves labor and irrigation resources.Nevertheless,there are two main issues,salt stress and alkaline stress,which contribute to poor emergence and seedling growth,thereby preventing the widespread adoption and application of this technique in the Ningxia Region of China.Therefore,to determine whether germination can be promoted by mixed-oligosaccharide(KP)priming(in which seeds are soaked in a KP solution before sowing)under salt and alkaline stress,a proteomics study was performed.KP-priming significantly mitigated abiotic stress,such as salt and alkaline stress,by inhibiting root elongation,ultimately improving seedling establishment.By comparing the proteomics analyses,we found that energy metabolic pathway was a vital factor in KP-priming,which explains the alleviation of salt and alkaline stress.Key proteins involved in starch mobilization,pyruvate mobilization,and ATP synthesis,were up-regulated by KP-priming,significantly blocking salt and alkaline-triggered starch accumulation while enhancing pyruvate metabolism.KP-priming also up-regulated ATP synthase to improve energy efficiency,thereby improving ATP production.In addition,it enhanced antioxidant enzymatic activities and reduced the accumulation of reactive oxygen species.All of these factors contributed to a better understanding of the energy regulatory pathway enhanced by KP-priming,which mediated the promotion of growth under salt and alkaline conditions.Thus,this study demonstrated that KP-priming can improve rice seed germination under salt and alkaline stress by altering energy metabolism.
基金supported by National Programs for Coordinated Promotion of Major Agricultural Technologies(Grant No.2021-ZYXT-02–1)Key Projects of Key research and Development Programs of Jiangsu Province(Grant No.BE2021323)+2 种基金the“333 Project”Scientific Research Project of Jiangsu Province(Grant No.70)Rural Revitalization Project of Huai’an(Grant No.HAN202312)Talent Introduction Research Project of Huaiyin Institute of Technology(Z301B22504).
文摘Melatonin and abscisic acid,as major plant hormones,play important roles in the physiological and biochemical activities of crops,but the interaction between the two under salt stress is not yet clear.This study investigated the endogenous levels of melatonin and abscisic acid in rice by using exogenous melatonin,abscisic acid,and their synthetic inhibitors,and examined their interactions under salt stress.The research results indicate that melatonin and abscisic acid can improve rice salt tolerance.Melatonin alleviated the salt sensitivity caused by abscisic acid deficiency,increased antioxidant enzyme activity and antioxidant content in rice treated with abscisic acid synth-esis inhibitors,and reduced total reactive oxygen species content and thiobarbituric acid reactive substance accu-mulation.Melatonin also increased the activity of key photosynthetic enzymes and the content of photosynthetic pigments,maintaining the parameters of photosynthetic gas exchange and chlorophyllfluorescence.In summary,melatonin alleviated the effects of abscisic acid deficiency on photosynthesis and antioxidant systems in rice and improved salt tolerance.This study is beneficial for expanding the understanding of melatonin regulation of crop salt tolerance.
基金supported by the State Key Laboratory of Aridland Crop Science,Gansu Agricultural University,China(GSCS-2019-10)the National Natural Science Foundation of China(31801414 and 32260478)+2 种基金the Gansu Province Science and Technology Program,China(20JR10RA531)the Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(2022D01E103)the Education Technology Innovation Project of Gansu Province,China(2022QB-076)。
文摘Activity of bc1 complex kinase(ABC1K)is an atypical protein kinase(aPK)that plays a crucial role in plant mitochondrial and plastid stress responses,but little is known about the responses of ABC1Ks to stress in cotton(Gossypium spp.).Here,we identified 40 ABC1Ks in upland cotton(Gossypium hirsutum L.)and found that the Gh ABC1Ks were unevenly distributed across 17 chromosomes.The GhABC1K family members included 35 paralogous gene pairs and were expanded by segmental duplication.The GhABC1K promoter sequences contained diverse cis-acting regulatory elements relevant to hormone or stress responses.The qRT-PCR results revealed that most Gh ABC1Ks were upregulated by exposure to different stresses.Gh ABC1K2-A05 and Gh ABC1K12-A07 expression levels were upregulated by at least three stress treatments.These genes were further functionally characterized by virus-induced gene silencing(VIGS).Compared with the controls,the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced cotton lines exhibited higher malondialdehyde(MDA)contents,lower catalase(CAT),peroxidase(POD)and superoxide dismutase(SOD)activities and reduced chlorophyll and soluble sugar contents under NaCl and PEG stress.In addition,the expression levels of six stress marker genes(Gh DREB2A,Gh SOS1,Gh CIPK6,Gh SOS2,Gh WRKY33,and Gh RD29A)were significantly downregulated after stress in the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced lines.The results indicate that knockdown of Gh ABC1K2-A05 and Gh ABC1K12-A07 make cotton more sensitive to salt and PEG stress.These findings can provide valuable information for intensive studies of Gh ABC1Ks in the responses and resistance of cotton to abiotic stresses.
基金supported by the National Key Research and Development Program of China(2017YFC1600802)Henan Provincial Science and Technology Research Project,China(No.232102110134).
文摘Salt stress inhibits plant growth and affects the biosynthesis of its secondary metabolites.Flavonoids are natural compounds that possess many important biological activities,playing a significant role in the medicinal activity of Eucommia ulmoides(E.ulmoides).To investigate the mechanism by which salt stress affects the biosynthesis of flavonoids in E.ulmoides,a comprehensive analysis of metabolomics and transcriptomics was conducted.The results indicated that salt stress led to the wilting and darkening of E.ulmoides leaves,accompanied by a decrease in chlorophyll levels,and significantly induced malondialdehyde(MDA)and relative electrical conductivity.During salt stress,most metabolites in the flavonoid biosynthesis pathway of E.ulmoides were upregulated,indicating that flavonoid biosynthesis is likely the main induced pathway under salt stress.Among them,secondary metabolites such as 6-Hydroxyluteolin and Quercetin are likely key metabolites induced by salt stress.The correlation analysis of transcriptomics and metabolomics revealed that EuSHT is a hub gene induced by salt stress,promoting the production of flavonoids such as 6-Hydroxyluteolin.The co-expression network showed a strong positive correlation between EuSHT and the biosynthesis of 6-Hydroxyluteolin and Quercetin,while it exhibited a negative correlation with Catechin biosynthesis.The branches leading to Luteolin and Dihydroquercetin are likely the main pathways for flavonoid compound biosynthesis in the plant stress response during salt stress.The results of this study provided a preliminary mechanism of secondary metabolites such as flavonoids in the medicinal plant E.ulmoides induced by salt stress and provided new theoretical support for discussing the mechanism of plant stress response.It also provided useful information for subsequent exploration of resistance genes in E.ulmoides.
文摘Background:Aldehyde dehydrogenase(ALDH)genes constitute an important family of supergenes that play key roles in synthesizing various biomolecules and maintaining cellular homeostasis by catalyzing the oxidation of aldehyde products.With climate change increasing the exposure of plants to abiotic stresses such as salt and drought,ALDH genes have been identified as important contributors to stress tolerance.In particular,they help to reduce stress-induced lipid peroxidation.Objectives:This study aims to identify and characterize members of the ALDH supergene family in Phaseolus vulgaris through a genome-wide bioinformatic analysis and investigate their role in response to abiotic stressors such as drought and salt stress.Methods:Genome-wide identification of 26 ALDH genes in P.vulgaris was performed using bioinformatics tools.The identified ALDH proteins were ana-lyzed for molecular weight,amino acid number,and exon number.Phylogenetic analysis was performed to clas-sify P.vulgaris,Arabidopsis thaliana,and Glycine max ALDH proteins into different groups.Strong links between these genes and functions related to growth,development,stress responses,and hormone signaling were identified by cis-element analysis in promoter regions.In silico expression,analysis was performed to assess gene expression levels in different plant tissues.Results:RT-qPCR results showed that the expression of ALDH genes was signif-icantly altered under drought and salt stress in beans.This study provides a comprehensive characterization of the ALDH supergene family in P.vulgaris,highlighting their potential role in abiotic stress tolerance.Conclusion:Thesefindings provide a basis for future research on the functional roles of ALDH genes in enhancing plant resis-tance to environmental stressors.
基金supported financially by the National Natural Science Foundation of China,No.82071272(to YZ).
文摘Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region–specific,particularly involving the corticolimbic system,including the ventral tegmental area,nucleus accumbens,prefrontal cortex,amygdala,and hippocampus.Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology.In this review,we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression.We focused on associated molecular pathways and neural circuits,with special attention to the brain-derived neurotrophic factor–tropomyosin receptor kinase B signaling pathway and the ventral tegmental area–nucleus accumbens dopamine circuit.We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature,severity,and duration of stress,especially in the above-mentioned brain regions of the corticolimbic system.Therefore,BDNF might be a biological indicator regulating stress-related processes in various brain regions.
文摘[Objectives]This study was conducted to improve crop yield and select excellent wheat varieties.[Methods]Wheat seedlings were treated with different concentrations of NaCl solution,and the activities of superoxide dismutase(SOD)and peroxidase(POD)and the content changes of malondialdehyde(MDA)in the leaves of seedlings were determined.A control group(distilled water)and three treatment groups(NaCl concentrations of 1,2 and 3 mmol/L)were set up.When the wheat seedlings grew to two leaves and one heart,they should be treated with different concentrations of NaCl solution(the wheat seedlings grew uniformly,and 20 ml of each NaCl concentration was used for treatment of wheat).When the wheat seedlings grew to four leaves and one heart under stress,samples were taken separately,once every 2 d,for three times,with 5 g of leaves each time.The SOD and POD activities and MDA content of seedlings in the control group and treatment groups were determined,and related protein sequences were analyzed by bioinformatics,including signal peptide prediction,transmembrane domain prediction,phosphorylation prediction and protein structure prediction.[Results]Under NaCl stress,the growth rates of seedling length and root length of wheat decreased obviously,and SOD and POD in leaves decreased,while the MDA content in leaves after treatment increased compared with the control group.SOD had no signal peptide,while POD had signal peptides and a transmembrane region.SOD and POD were different in terms of secondary and tertiary structures and the number of phosphorylation sites.[Conclusions]These results lays a solid theoretical foundation and application prospect for the study on salt tolerance mechanism of wheat seedlings in the later stage.
基金financially supported by the National Natural Science Foundation of China(No.52204084)the Open Research Fund of the State Key Laboratory of Coal Resources and safe Mining,CUMT,China(No.SKLCRSM 23KF004)+3 种基金the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China(No.FRF-IDRY-GD22-002)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,China(No.QNXM20220009)the National Key R&D Program of China(Nos.2022YFC2905600 and 2022 YFC3004601)the Science,Technology&Innovation Project of Xiongan New Area,China(No.2023XAGG0061)。
文摘Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.
基金Supported by the Natural Science Foundation of Heilongjiang Province(LH2019C021)。
文摘Salt stress is a major abiotic stress limiting plant growth and yield. In the present study, the effects of exogenous H_(2)O_(2) on the reactive oxygen species(ROS) metabolism and the antioxidant system in leaves of Nitralia tangutorum Bobr. under salt stress were studied. N. tangutorum seedlings were subjected to 200 mmol·L^(-1) NaCl treatment with or without the exogenous application of H_(2)O_(2) for 7 days. The results showed that NaCl stress significantly increased the relative conductivity, the contents of thiobarbituric acid reactive substances(TBARS) and ROS(H_(2)O_(2) and O_(2)^(·-)), as well as promoted the activities of antioxidant enzymes including superoxide dismutase(SOD), peroxidase(POD), catalase(CAT), and ascorbate peroxidase(APX) in N. tangutorum leaves. In addition, exogenous H_(2)O_(2) decreased the relative conductivity, the contents of TBARS, H_(2)O_(2) and O_(2)^(·-), while further enhanced the activities of antioxidant enzymes. These results indicated that H_(2)O_(2) effectively alleviated the adverse effects of NaCl stress on N. tangutorum through the regulation of ROS metabolism.
基金supported by the STI 2030—Major Projects 2021ZD0204000,No.2021ZD0204003 (to XZ)the National Natural Science Foundation of China,Nos.32170973 (to XZ),32071018 (to ZH)。
文摘Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types of neurotransmitters. Our previous results have shown that disco-interacting protein 2 homolog A(Dip2a) knockout mice exhibit brain development disorders and abnormal amino acid metabolism in serum. This suggests that DIP2A is involved in the metabolism of amino acid–associated neurotransmitters. Therefore, we performed targeted neurotransmitter metabolomics analysis and found that Dip2a deficiency caused abnormal metabolism of tryptophan and thyroxine in the basolateral amygdala and medial prefrontal cortex. In addition, acute restraint stress induced a decrease in 5-hydroxytryptamine in the basolateral amygdala. Additionally, Dip2a was abundantly expressed in excitatory neurons of the basolateral amygdala, and deletion of Dip2a in these neurons resulted in hopelessness-like behavior in the tail suspension test. Altogether, these findings demonstrate that DIP2A in the basolateral amygdala may be involved in the regulation of stress susceptibility. This provides critical evidence implicating a role of DIP2A in affective disorders.
文摘Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototoxic,and idiopathic sudden sensorineural are other less common types of acquired hearing loss.The etiology of these conditions is complex and multi-fa ctorial involving an interplay of genetic and environmental factors.Oxidative stress has recently been proposed as a likely linking cause in most types of acquired sensorineural hearing loss.Short non-coding RNA sequences known as microRNAs(miRNAs)have increasingly been shown to play a role in cellular hypoxia and oxidative stress responses including promoting an apoptotic response.Sensory hair cell death is a central histopathological finding in sensorineural hearing loss.As these cells do not regenerate in humans,it underlies the irreversibility of human age-related hearing loss.Ovid EMBASE,Ovid MEDLINE,Web of Science Core Collection,and ClinicalTrials.gov databases over the period August 1,2018 to July 31,2023 were searched with"hearing loss,""hypoxamiRs,""hypoxia,""microRNAs,""ischemia,"and"oxidative stress"text words for English language primary study publications or registered clinical trials.Registe red clinical trials known to the senior author we re also assessed.A total of 222studies were thus identified.After excluding duplicates,editorials,retra ctions,secondary research studies,and non-English language articles,39 primary studies and clinical trials underwent full-text screening.This resulted in 11 animal,in vitro,and/or human subject journal articles and 8 registered clinical trial database entries which form the basis of this narrative review.MiRNAs miR-34a and miR-29b levels increase with age in mice.These miRNAs were demonstrated in human neuroblastoma and murine cochlear cell lines to target Sirtuin 1/peroxisome proliferato r-activated receptor gamma coactivator-1-alpha(SIRT1/P GC-1α),SIRT1p53,and SIRT1/hypoxia-inducible factor 1-alpha signaling pathways resulting in increased apoptosis.Furthermore,hypoxia and oxidative stress had a similar adve rse apoptotic effect,which was inhibited by resve ratrol and a myocardial inhibitorassociated transcript,a miR-29b competing endogenous mRNA.Gentamicin reduced miR-182-5p levels and increased cochlear oxidative stress and cell death in mice-an effect that was corrected by inner ear stem cell-derived exosomes.There is ongoing work seeking to determine if these findings can be effectively translated to humans.
文摘BACKGROUND Revisiting the epidemiology of posttraumatic stress symptoms(PTSSs)among university students during the coronavirus disease 2019(COVID-19)pandemic as well as understanding the mental health help-seeking behavior of individuals with PTSSs has critical implications for public mental health strategies in future medical pandemics.AIM To investigate the prevalence and correlates of PTSSs among university students during the first wave of the COVID-19 pandemic in China and to examine mental health help-seeking behaviors among these students.METHODS A total of 2507 Chinese university students were recruited via snowball sampling.The students completed the Seven-item Screening Scale for Post-traumatic Stress Disorder during the first wave of the COVID-19 pandemic in China.Sociodemo-graphic characteristics,pandemic-related characteristics,and mental health help-seeking behaviors of students with PTSSs were also collected.RESULTS The prevalence of PTSSs among the participants was 28.0%.Seven significant correlates of PTSSs were identified(odds ratio=1.23-3.65,P≤0.024):Female sex,being 19 years old or older,living with others or alone,a low level of family economic status,fair or poor interpersonal relationships,severe or very severe local pandemic,and having family members diagnosed with COVID-19.However,only 3.28%of the students with PTSSs reported seeking help from mental health specialists.Among the 23 students who sought help from mental health specialists,13 opted for online or telephone-based psychological consultation.CONCLUSION Our data suggest that there was a high risk of PTSSs among university students and a high level of unmet mental health needs during the COVID-19 pandemic.The delivery of mental health services online or via telephone is a promising approach to address these unmet needs.
基金Supported by the Shijiazhuang Science and Technology Research and Development Program,No.221460383.
文摘BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current status of family rearing,parental stress,and behavioral and emotional problems of preschool children and to analyze the mediating effect of the current status of family rearing on parental stress and behavioral/emo-tional problems.METHODS We use convenience sampling to select 258 preschool children in the physical examination center of our hospital from October 2021 to September 2023.The children and their parents were evaluated using a questionnaire survey.Pearson's correlation was used to analyze the correlation between child behavioral and emotional problems and parental stress and family rearing,and the structural equation model was constructed to test the mediating effect.RESULTS The score for behavioral/emotional problems of 258 preschool children was(27.54±3.63),the score for parental stress was(87.64±11.34),and the score for parental family rearing was(31.54±5.24).There was a positive correlation between the behavioral and emotional problems of the children and the“hostile/mandatory”parenting style;meanwhile,showed a negative correlation with the“support/participation”parenting style(all P<0.05).The intermediary effect value between the family upbringing of parents in parental stress and children's behavior problems was 29.89%.CONCLUSION Parental family upbringing has a mediating effect between parental stress and behavioral and emotional problems of children.Despite paying attention to the behavioral and emotional problems of preschool-age children,clinical medical staff should provide correct and reasonable parenting advice to their parents to promote the mental health of preschool-age children.