期刊文献+
共找到534篇文章
< 1 2 27 >
每页显示 20 50 100
各向异性的L_(0)正则化图像平滑方法
1
作者 赵吴帆 武文娜 武婷婷 《南京邮电大学学报(自然科学版)》 北大核心 2024年第4期131-138,共8页
现有的图像平滑方法缺乏灵活性,会导致边缘不清晰、结构缺失和过度锐化等问题。文中提出一种新的自适应加权矩阵的正则化方法,主要应用于图像平滑,并且可以扩展到其他应用。提出的模型设计了一个新的正则化项,基于梯度算子▽和自适应加... 现有的图像平滑方法缺乏灵活性,会导致边缘不清晰、结构缺失和过度锐化等问题。文中提出一种新的自适应加权矩阵的正则化方法,主要应用于图像平滑,并且可以扩展到其他应用。提出的模型设计了一个新的正则化项,基于梯度算子▽和自适应加权矩阵T组合为L_(0)范数正则化项,使得模型具有各向异性。通过为不同梯度方向赋予不同的权重,以此来刻画平滑图像的局部结构,更好地展现局部特征,防止过度平滑。由于所提出的模型是非光滑且非凸的,在求解上比较复杂,因此采用ADMM算法对模型进行求解。把目标函数分解成几个易求解的子问题,分别对每个子问题求解,最终得到模型的最优解。主客观实验表明,提出的模型在视觉效果以及数值方面都有明显的提高。 展开更多
关键词 图像平滑 L_(0)正则化 自适应加权矩阵 各向异性 交替方向乘子法
下载PDF
(0,1)矩阵一种分类的算法 被引量:1
2
作者 吴洪 严邦宁 +1 位作者 俞曙霞 吴宗恩 《广西大学学报(自然科学版)》 CAS CSCD 1995年第4期320-324,共5页
从(0,1)矩阵的非升行和矢、非升列和矢出发,提出一种(0,1)矩阵分类的算法,并具体提出计算机编程的技巧。该法在计算Glauber多重散射问题时非常有用。
关键词 多重散射理论 置换群 矩阵 分类 0-1矩阵 算法
下载PDF
一类(0,1)矩阵的秩 被引量:2
3
作者 朱雪芳 《杭州师范大学学报(自然科学版)》 CAS 2013年第3期223-226,共4页
令S(n,k)表示线和为k(1≤k≤n-1)的n阶(0,1)矩阵的集合,R(n,k)表示属于S(n,k)的矩阵秩的集合,r(n,k)表示属于S(n,k)且迹为零的对称矩阵秩的集合.研究了线和为2的两种(0,1)矩阵的秩,给出了R(n,2)和r(n,2).
关键词 (0 1)矩阵 固定线和
下载PDF
(0,1)-矩阵积和式的上下界
4
作者 张雪媛 王萃琦 朱晓颖 《徐州师范大学学报(自然科学版)》 CAS 2007年第1期30-32,共3页
令A=[aij]是一个n×n的(0,1)方阵.用τ表示A中0元素的个数.给出0≤τ≤n时,矩阵A的积和式的上下界.
关键词 积和式 (0 1)矩阵 上界 下界
下载PDF
最大跳跃数M(19,10)
5
作者 游林 王天明 《北京邮电大学学报》 EI CAS CSCD 北大核心 2003年第z1期28-37,共10页
如果n及k(n≥k)是两个较大的正整数,那么要计算出最大跳跃数M(n,k)的值非常困难,Brualdi与Jung曾给出了当1≤k≤n≤10时M(n,k)的值,对于k=10,n=19,证明了M(19,10)=33,这证实了Brualdi与Jung的关于最大跳跃数M(2k+1,k+1)的值的猜想在k=9... 如果n及k(n≥k)是两个较大的正整数,那么要计算出最大跳跃数M(n,k)的值非常困难,Brualdi与Jung曾给出了当1≤k≤n≤10时M(n,k)的值,对于k=10,n=19,证明了M(19,10)=33,这证实了Brualdi与Jung的关于最大跳跃数M(2k+1,k+1)的值的猜想在k=9时成立,但是他们的另一个猜想M(n,k)<M(n+l_1,k+l_2)对l_1=1与l_2=1不成立。 展开更多
关键词 (0 1)-矩阵 最大跳跃数 猜想
下载PDF
一类(0,1)矩阵的谱
6
作者 殷剑宏 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第11期1468-1471,共4页
矩阵的特征值是矩阵理论的一个重要概念,然而,求一个矩阵(哪怕是阶数很低的矩阵)的特征值的精确值,却是非常困难的。文章运用图论的理论和方法,巧妙地解决了一类(0,1)矩阵的谱,为(0,1)矩阵的谱理论研究,提供了一种新的思维方法。
关键词 (0 1)矩阵 矩阵的谱 特征值
下载PDF
一类下Hessenberg(0,1)—矩阵行列式的上界
7
作者 姚伽华 《湛江师范学院学报》 2003年第3期15-19,共5页
文章讨论最多包含n-1个零元,且没有零元的行单独出现,有零元的列不会单独出现的n阶下Hessenberg(0,1)-矩阵,并给出了该类矩阵行列式的上界.
关键词 下Hessenberg矩阵 (0 1)-矩阵 行列式 零元 变换
下载PDF
关于(0—1)序列的性质及其应用
8
作者 王景濯 《佛山科学技术学院学报(社会科学版)》 1989年第2期42-49,共8页
本文侧重研究(0—1)随机变量序列一些性质及其应用.
关键词 (0.1)—随机变量序列 简单(0 1)—序列 数学期望 协方差矩阵
下载PDF
正则(0,1)矩阵的行并存数
9
作者 钟金 谷芳芳 《江西理工大学学报》 CAS 2017年第1期88-91,共4页
正则(0,1)矩阵是具有固定线和的(0,1)矩阵,为了更好的了解正则(0,1)矩阵的组合性质,研究了正则(0,1)矩阵的行并存数问题,给出了正则(0,1)矩阵行并存数的上下界,说明了在某些情形下该上界是精确的.此外,确定了行并存数为1的正则(0,1)矩... 正则(0,1)矩阵是具有固定线和的(0,1)矩阵,为了更好的了解正则(0,1)矩阵的组合性质,研究了正则(0,1)矩阵的行并存数问题,给出了正则(0,1)矩阵行并存数的上下界,说明了在某些情形下该上界是精确的.此外,确定了行并存数为1的正则(0,1)矩阵类的行列式与奇异值. 展开更多
关键词 正则(0 1)矩阵 行并存数 上下界 行列式
下载PDF
(0,1)矩阵方程A^m=J解的结构
10
作者 周笑明 薛贵章 《黑龙江大学自然科学学报》 CAS 1993年第4期44-47,56,共5页
本文给出(0,1)矩阵方程A^m=J解的结构,利用所得结果对[1]中提出A^2=J解的分类问题给予一个解答.
关键词 矩阵 分类 结构 矩阵方程
下载PDF
M_0-矩阵类与迭代法的单调收敛性
11
作者 于庚蒲 《吉林师范学院学报》 1998年第5期1-5,共5页
M-矩阵类及正则分裂在解大线性方程组的迭代法及其收敛性上具有重要意义,本文定义了M0-矩阵类、强正则分裂及迭代法的按分量均匀收敛性,研究了M0-矩阵类的一些性质,得到了类似于M-矩阵类和正则分裂的一些结论。
关键词 M0-矩阵 强正则分裂 按分量均匀收敛性
下载PDF
l_(p)(0
12
作者 彭定涛 张弦 易守鱼 《中国科学:数学》 CSCD 北大核心 2024年第8期1123-1140,共18页
本文研究一类低秩矩阵优化问题,其中惩罚项为目标矩阵奇异值的l_(p)(0<p<1)正则函数.基于半阈值函数在稀疏/低秩恢复问题中的良好性能,本文提出奇异值半阈值(singular value half thresholding,SVHT)算法来求解l_(p)正则矩阵优化... 本文研究一类低秩矩阵优化问题,其中惩罚项为目标矩阵奇异值的l_(p)(0<p<1)正则函数.基于半阈值函数在稀疏/低秩恢复问题中的良好性能,本文提出奇异值半阈值(singular value half thresholding,SVHT)算法来求解l_(p)正则矩阵优化问题.SVHT算法的主要迭代利用了子问题的闭式解,但与现有算法不同,其本质上是对目标函数在当前点进行局部1/2近似,而不是局部线性或局部二次近似.通过构造目标函数的Lipschitz和非Lipschitz近似函数,本文证明了SVHT算法生成序列的任意聚点都是问题的一阶稳定点.在数值实验中,利用模拟数据和实际图像数据的低秩矩阵补全问题对SVHT算法进行测试.大量的数值结果表明,SVHT算法对低秩矩阵优化问题在速度、精度和鲁棒性等方面都表现优异. 展开更多
关键词 低秩矩阵优化问题 矩阵l_(p)正则 闭式解 奇异值半阈值算法 一阶稳定点
原文传递
基于L_(0)矩阵范数正则化的自然图像去反光算法
13
作者 丁凤 夏又生 《福州大学学报(自然科学版)》 CAS 北大核心 2022年第6期729-736,共8页
提出一种基于L_(0)范数正则化的自然图像去反光算法.首先,根据自然反光图像的两个特征构建基于L_(0)范数的正则优化模型,保证漫反射图像系数矩阵的稀疏性、低秩性和反光区域漫反射分量的有效恢复.其次,利用增广拉格朗日技术,导出求解L_... 提出一种基于L_(0)范数正则化的自然图像去反光算法.首先,根据自然反光图像的两个特征构建基于L_(0)范数的正则优化模型,保证漫反射图像系数矩阵的稀疏性、低秩性和反光区域漫反射分量的有效恢复.其次,利用增广拉格朗日技术,导出求解L_(0)范数正则优化模型的算法.最后,通过与相关的图像去反光算法对比,证实本图像去反光算法在均方误差和结构相似度上均优于其他去反光算法,使其生成图像在保留更多纹理细节信息的同时,可以有效去除图像反光. 展开更多
关键词 图像反光去除 L_(0)范数正则化 矩阵变量优化
下载PDF
Diverse Deep Matrix Factorization With Hypergraph Regularization for Multi-View Data Representation
14
作者 Haonan Huang Guoxu Zhou +2 位作者 Naiyao Liang Qibin Zhao Shengli Xie 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第11期2154-2167,共14页
Deep matrix factorization(DMF)has been demonstrated to be a powerful tool to take in the complex hierarchical information of multi-view data(MDR).However,existing multiview DMF methods mainly explore the consistency o... Deep matrix factorization(DMF)has been demonstrated to be a powerful tool to take in the complex hierarchical information of multi-view data(MDR).However,existing multiview DMF methods mainly explore the consistency of multi-view data,while neglecting the diversity among different views as well as the high-order relationships of data,resulting in the loss of valuable complementary information.In this paper,we design a hypergraph regularized diverse deep matrix factorization(HDDMF)model for multi-view data representation,to jointly utilize multi-view diversity and a high-order manifold in a multilayer factorization framework.A novel diversity enhancement term is designed to exploit the structural complementarity between different views of data.Hypergraph regularization is utilized to preserve the high-order geometry structure of data in each view.An efficient iterative optimization algorithm is developed to solve the proposed model with theoretical convergence analysis.Experimental results on five real-world data sets demonstrate that the proposed method significantly outperforms stateof-the-art multi-view learning approaches. 展开更多
关键词 Deep matrix factorization(DMF) diversity hypergraph regularization multi-view data representation(MDR)
下载PDF
[0,1]区间上的r重正交多小波基 被引量:10
15
作者 杨守志 程正兴 《数学学报(中文版)》 SCIE CSCD 北大核心 2002年第4期789-796,共8页
本文利用L2(R)上的紧支撑正交的多尺度函数和多小波构造出有限区间[0,1]上的正交多尺度函数及相应的正交多小波.本文构造的逼近空间Vj[0,1]与相应的小波子空间Wj[0,1]具有维数相同的特点,从而给它的应用带来巨大方便.最后给出重数为2... 本文利用L2(R)上的紧支撑正交的多尺度函数和多小波构造出有限区间[0,1]上的正交多尺度函数及相应的正交多小波.本文构造的逼近空间Vj[0,1]与相应的小波子空间Wj[0,1]具有维数相同的特点,从而给它的应用带来巨大方便.最后给出重数为2时的[0,1]区间上的正交多小波基构造算例. 展开更多
关键词 正交多尺度函数 正交多小波基 两尺度矩阵方程 [0 1]区间上正交多尺度函数 [0 1]区间上正交多小波基
原文传递
(0,1)-MATRICES AND GENERALIZED ULTRAMETRIC MATRICES
16
作者 XIANG Shuhuang(Department of Mathematics, Xi’an Jiaotong University, Xi’an 710049, & Department of Mathematics, Nankai University, Tianjin 300071, China) 《Systems Science and Mathematical Sciences》 SCIE EI CSCD 1999年第2期154-158,共5页
In this paper, using a graph theoretic approach, we give a necessary and sufficient condition for a (0,1)-matrix to be a nonsingular generalized ultrametric matrix.
关键词 (0 1)-matrix INVERSE M-matrix ULTRAMETRIC matrix GENERALIZED ultrametricmatrix.
原文传递
Graph Regularized L_p Smooth Non-negative Matrix Factorization for Data Representation 被引量:10
17
作者 Chengcai Leng Hai Zhang +2 位作者 Guorong Cai Irene Cheng Anup Basu 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第2期584-595,共12页
This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information ... This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information of a data set and produces smooth and stable solutions. The main contributions are as follows: first, graph regularization is added into NMF to discover the hidden semantics and simultaneously respect the intrinsic geometric structure information of a data set. Second,the Lpsmoothing constraint is incorporated into NMF to combine the merits of isotropic(L_2-norm) and anisotropic(L_1-norm)diffusion smoothing, and produces a smooth and more accurate solution to the optimization problem. Finally, the update rules and proof of convergence of GSNMF are given. Experiments on several data sets show that the proposed method outperforms related state-of-the-art methods. 展开更多
关键词 Data clustering dimensionality reduction GRAPH regularIZATION LP SMOOTH non-negative matrix factorization(SNMF)
下载PDF
Kernel matrix learning with a general regularized risk functional criterion 被引量:3
18
作者 Chengqun Wang Jiming Chen +1 位作者 Chonghai Hu Youxian Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期72-80,共9页
Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is... Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is to learn the kernel from the data automatically. A general regularized risk functional (RRF) criterion for kernel matrix learning is proposed. Compared with the RRF criterion, general RRF criterion takes into account the geometric distributions of the embedding data points. It is proven that the distance between different geometric distdbutions can be estimated by their centroid distance in the reproducing kernel Hilbert space. Using this criterion for kernel matrix learning leads to a convex quadratically constrained quadratic programming (QCQP) problem. For several commonly used loss functions, their mathematical formulations are given. Experiment results on a collection of benchmark data sets demonstrate the effectiveness of the proposed method. 展开更多
关键词 kernel method support vector machine kernel matrix learning HKRS geometric distribution regularized risk functional criterion.
下载PDF
Data Gathering in Wireless Sensor Networks Via Regular Low Density Parity Check Matrix 被引量:1
19
作者 Xiaoxia Song Yong Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第1期83-91,共9页
A great challenge faced by wireless sensor networks(WSNs) is to reduce energy consumption of sensor nodes. Fortunately, the data gathering via random sensing can save energy of sensor nodes. Nevertheless, its randomne... A great challenge faced by wireless sensor networks(WSNs) is to reduce energy consumption of sensor nodes. Fortunately, the data gathering via random sensing can save energy of sensor nodes. Nevertheless, its randomness and density usually result in difficult implementations, high computation complexity and large storage spaces in practical settings. So the deterministic sparse sensing matrices are desired in some situations. However,it is difficult to guarantee the performance of deterministic sensing matrix by the acknowledged metrics. In this paper, we construct a class of deterministic sparse sensing matrices with statistical versions of restricted isometry property(St RIP) via regular low density parity check(RLDPC) matrices. The key idea of our construction is to achieve small mutual coherence of the matrices by confining the column weights of RLDPC matrices such that St RIP is satisfied. Besides, we prove that the constructed sensing matrices have the same scale of measurement numbers as the dense measurements. We also propose a data gathering method based on RLDPC matrix. Experimental results verify that the constructed sensing matrices have better reconstruction performance, compared to the Gaussian, Bernoulli, and CSLDPC matrices. And we also verify that the data gathering via RLDPC matrix can reduce energy consumption of WSNs. 展开更多
关键词 Data gathering regular low density parity check(RLDPC) matrix sensing matrix signal reconstruction wireless sensor networks(WSNs)
下载PDF
Extracting Sub-Networks from Brain Functional Network Using Graph Regularized Nonnegative Matrix Factorization 被引量:1
20
作者 Zhuqing Jiao Yixin Ji +1 位作者 Tingxuan Jiao Shuihua Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第5期845-871,共27页
Currently,functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders.If one brain disease just manifests as some cognitive dysfunction,it means that the di... Currently,functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders.If one brain disease just manifests as some cognitive dysfunction,it means that the disease may affect some local connectivity in the brain functional network.That is,there are functional abnormalities in the sub-network.Therefore,it is crucial to accurately identify them in pathological diagnosis.To solve these problems,we proposed a sub-network extraction method based on graph regularization nonnegative matrix factorization(GNMF).The dynamic functional networks of normal subjects and early mild cognitive impairment(eMCI)subjects were vectorized and the functional connection vectors(FCV)were assembled to aggregation matrices.Then GNMF was applied to factorize the aggregation matrix to get the base matrix,in which the column vectors were restored to a common sub-network and a distinctive sub-network,and visualization and statistical analysis were conducted on the two sub-networks,respectively.Experimental results demonstrated that,compared with other matrix factorization methods,the proposed method can more obviously reflect the similarity between the common subnetwork of eMCI subjects and normal subjects,as well as the difference between the distinctive sub-network of eMCI subjects and normal subjects,Therefore,the high-dimensional features in brain functional networks can be best represented locally in the lowdimensional space,which provides a new idea for studying brain functional connectomes. 展开更多
关键词 Brain functional network sub-network functional connectivity graph regularized nonnegative matrix factorization(GNMF) aggregation matrix
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部