利用超细旋转盘式砂磨机细化颗粒固相烧结法,合成锂离子电池正极材料Li Ni0.80Co0.15Al0.05O2。原料经过砂磨后,混合均匀,粒径达到纳米级。根据塔曼定理,混合均匀的微小粒径可以在相同的烧结温度下,提高烧结的强度。SEM、XRD分别表征NC...利用超细旋转盘式砂磨机细化颗粒固相烧结法,合成锂离子电池正极材料Li Ni0.80Co0.15Al0.05O2。原料经过砂磨后,混合均匀,粒径达到纳米级。根据塔曼定理,混合均匀的微小粒径可以在相同的烧结温度下,提高烧结的强度。SEM、XRD分别表征NCA材料的颗粒形貌和晶形结构。结果显示,通过细化颗粒烧结后的样品具有良好的形貌和层状结构。CV法测试样品的氧化还原性能,电池测试系统测试样品的电化学性能。测试结果显示,经过细化颗粒,在720℃合成的NCA材料具有良好的层状结构,018/110峰分裂明显。样品的电化学性能优良,0.2C下,首次放电容量达到182 m Ah?g?1,30次循环后容量保持率99.9%。1C下,首次放电容量153 m Ah?g?1,100次循环后容量保持率92.6%。展开更多
针对锡负极材料充放电过程中的体积效应,综合采用组分改性与结构改性的研究方法,合成Cu_(0.85)Sn_(0.15)合金负极材料,研究Cu的掺入对Sn电化学稳定性的影响,同时基于优化改性的Cu_(0.85)Sn_(0.15)合金开展核壳结构设计,研究最佳核壳结...针对锡负极材料充放电过程中的体积效应,综合采用组分改性与结构改性的研究方法,合成Cu_(0.85)Sn_(0.15)合金负极材料,研究Cu的掺入对Sn电化学稳定性的影响,同时基于优化改性的Cu_(0.85)Sn_(0.15)合金开展核壳结构设计,研究最佳核壳结构构造工艺.结果表明,掺入Cu能在一定程度上改善Sn的循环稳定性,Cu_(0.85)Sn_(0.15)样品的容量在60次循环后趋于稳定,库伦效率较高;核壳结构处理能大幅提升Cu_(0.85)Sn_(0.15)合金负极材料的循环稳定性,采用球形改性天然石墨作为内核的G@Cu_(0.85)Sn_(0.15)@C负极材料首次放电比容量接近800 m Ah/g,充电比容量最大值超过了500 m Ah/g,100次容量保持率大于85%.核壳结构能将Cu_(0.85)Sn_(0.15)合金的体积效应控制在"囚笼"式结构内,利于材料容量的发挥及循环稳定性的提升.核壳结构的可控制备对实现锡基合金负极材料的产业化具有重要的作用.展开更多
采用两步干混-球磨方法制备了石墨烯掺杂改性的锂离子电池LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2复合正极材料,实现LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料的高容量和高安全性。借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X...采用两步干混-球磨方法制备了石墨烯掺杂改性的锂离子电池LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2复合正极材料,实现LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料的高容量和高安全性。借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)以及电化学测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,石墨烯的存在实现了Li Fe PO4材料在LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料表面的完全包覆,形成致密的包覆层,进一步抑制LiNi_(0.8)Co_(0.15)Al_(0.05)O_2与电解液之间的副反应,提高活性材料利用率和循环性能。三者之间构成导电网络,加快电子渗透和传输,提高倍率性能。Li Fe PO4质量分数为20%的Li Fe PO4-Graphene/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品具有最佳的容量性能和长循环性能,0.1C时放电容量达到202.5 m Ah·g^(-1),3C时放电容量仍然可保持在160.5 m Ah·g^(-1)。50℃在2.8~4.3 V,0.5C下循环100次后,容量保持率为91.9%,优于LiNi_(0.8)Co_(0.15)Al_(0.05)O_2和LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品的72.9%和82.0%。展开更多
文摘利用超细旋转盘式砂磨机细化颗粒固相烧结法,合成锂离子电池正极材料Li Ni0.80Co0.15Al0.05O2。原料经过砂磨后,混合均匀,粒径达到纳米级。根据塔曼定理,混合均匀的微小粒径可以在相同的烧结温度下,提高烧结的强度。SEM、XRD分别表征NCA材料的颗粒形貌和晶形结构。结果显示,通过细化颗粒烧结后的样品具有良好的形貌和层状结构。CV法测试样品的氧化还原性能,电池测试系统测试样品的电化学性能。测试结果显示,经过细化颗粒,在720℃合成的NCA材料具有良好的层状结构,018/110峰分裂明显。样品的电化学性能优良,0.2C下,首次放电容量达到182 m Ah?g?1,30次循环后容量保持率99.9%。1C下,首次放电容量153 m Ah?g?1,100次循环后容量保持率92.6%。
文摘针对锡负极材料充放电过程中的体积效应,综合采用组分改性与结构改性的研究方法,合成Cu_(0.85)Sn_(0.15)合金负极材料,研究Cu的掺入对Sn电化学稳定性的影响,同时基于优化改性的Cu_(0.85)Sn_(0.15)合金开展核壳结构设计,研究最佳核壳结构构造工艺.结果表明,掺入Cu能在一定程度上改善Sn的循环稳定性,Cu_(0.85)Sn_(0.15)样品的容量在60次循环后趋于稳定,库伦效率较高;核壳结构处理能大幅提升Cu_(0.85)Sn_(0.15)合金负极材料的循环稳定性,采用球形改性天然石墨作为内核的G@Cu_(0.85)Sn_(0.15)@C负极材料首次放电比容量接近800 m Ah/g,充电比容量最大值超过了500 m Ah/g,100次容量保持率大于85%.核壳结构能将Cu_(0.85)Sn_(0.15)合金的体积效应控制在"囚笼"式结构内,利于材料容量的发挥及循环稳定性的提升.核壳结构的可控制备对实现锡基合金负极材料的产业化具有重要的作用.
文摘采用两步干混-球磨方法制备了石墨烯掺杂改性的锂离子电池LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2复合正极材料,实现LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料的高容量和高安全性。借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)以及电化学测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,石墨烯的存在实现了Li Fe PO4材料在LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料表面的完全包覆,形成致密的包覆层,进一步抑制LiNi_(0.8)Co_(0.15)Al_(0.05)O_2与电解液之间的副反应,提高活性材料利用率和循环性能。三者之间构成导电网络,加快电子渗透和传输,提高倍率性能。Li Fe PO4质量分数为20%的Li Fe PO4-Graphene/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品具有最佳的容量性能和长循环性能,0.1C时放电容量达到202.5 m Ah·g^(-1),3C时放电容量仍然可保持在160.5 m Ah·g^(-1)。50℃在2.8~4.3 V,0.5C下循环100次后,容量保持率为91.9%,优于LiNi_(0.8)Co_(0.15)Al_(0.05)O_2和LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品的72.9%和82.0%。