Hafnia-based ferroelectric materials, like Hf_(0.5)Zr_(0.5)O_(2)(HZO), have received tremendous attention owing to their potentials for building ultra-thin ferroelectric devices. The orthorhombic(O)-phase of HZO is fe...Hafnia-based ferroelectric materials, like Hf_(0.5)Zr_(0.5)O_(2)(HZO), have received tremendous attention owing to their potentials for building ultra-thin ferroelectric devices. The orthorhombic(O)-phase of HZO is ferroelectric but metastable in its bulk form under ambient conditions, which poses a considerable challenge to maintaining the operation performance of HZO-based ferroelectric devices. Here, we theoretically addressed this issue that provides parameter spaces for stabilizing the O-phase of HZO thin-films under various conditions. Three mechanisms were found to be capable of lowering the relative energy of the O-phase, namely, more significant surface-bulk portion of(111) surfaces, compressive c-axis strain,and positive electric fields. Considering these mechanisms, we plotted two ternary phase diagrams for HZO thin-films where the strain was applied along the in-plane uniaxial and biaxial, respectively. These diagrams indicate the O-phase could be stabilized by solely shrinking the film-thickness below 12.26 nm, ascribed to its lower surface energies. All these results shed considerable light on designing more robust and higher-performance ferroelectric devices.展开更多
Thick-film thermistor with negative temperature coefficient(NTC), low room-temperature resistivity and modest thermistor constant was screen-printed on the alumina substrate by the combination of 30.94III0.04II0.02 ...Thick-film thermistor with negative temperature coefficient(NTC), low room-temperature resistivity and modest thermistor constant was screen-printed on the alumina substrate by the combination of 30.94III0.04II0.02 B OBi Coa Co with Ba0.5Bi0.5Fe0.9Sn0.1O3. The electrical properties of the thick films were characterized by a digital multimeter, a Keithley 2400 and an impedance analyzer. The results show that with the Ba0.5Bi0.5Fe0.9Sn0.1O3 content increasing from 0.05 to 0.25, the values of room-temperature resistivity, thermistor constant and peak voltage of the thick films increases and are in the ranges of 1.47-26.5 ?·cm, 678-1345 K and 18.9-47.0 V, respectively. The corresponding current at the peak voltage of the thick films decreases and is in the range of 40-240 m A. The impedance spectroscopy measurement demonstrates that the as-prepared thick films show the abnormal electrical heterogeneous microstructure, consisting of high-resistive grains and less resistive grain boundary regions. It can be concluded that the addition of Ba0.5Bi0.5Fe0.9Sn0.1O3 into 30.94III0.04II0.02 Ba Co OBi Co improves the thermistor behavior and but also deteriorates the current characteristics.展开更多
In this work, the band structure and optical-related properties of CuIn0.5Ga0.5Se2 thin film are presented. The calculation is performed by the full-potential linearized augmented plane wave (FPLAPW) method. The spin-...In this work, the band structure and optical-related properties of CuIn0.5Ga0.5Se2 thin film are presented. The calculation is performed by the full-potential linearized augmented plane wave (FPLAPW) method. The spin-orbit coupling is considered. The result for the dielectric function is in good agreement with earlier experimental measurements and simulations. Based on the complex dielectric function, the dielectric constant, the absorption coefficient, the complex refractive index and the reflectivity at normal incidence are explored. We found that they are comparable with the earlier results.展开更多
Ethyl-(2,2,2-trifluoroethyl)carbonate(ETFEC)is investigated as a solvent component in high-voltage electrolytes for LiNi0.5Mn1.5O4(LNMO).Our results show that the self-discharge behavior and the high temperature cycle...Ethyl-(2,2,2-trifluoroethyl)carbonate(ETFEC)is investigated as a solvent component in high-voltage electrolytes for LiNi0.5Mn1.5O4(LNMO).Our results show that the self-discharge behavior and the high temperature cycle performance can be significantly improved by the addition of 10%ETFEC into the normal carbonate electrolytes,e.g.,the capacity retention improved from 65.3%to 77.1%after 200 cycles at 60℃.The main reason can be ascribed to the high stability of ETFEC which prevents large oxidation of the electrolyte on the cathode surface.In addition,we also explore the feasibility of electrolytes using single fluoriated-solvents with and without additives.Our results show that the cycle performance of LNMO material can be greatly improved in 1 MLiPF6+pure ETFEC-solvent system with 2 wt%ethylene carbonate(EC)or ethylene sulfate(DTD).The capacity retention of the LNMO materials is 93%after 300 cycles,even better than that of carbonate-based electrolytes.It is shown that the additives are oxidized on the surface of LNMO particles and contribute to the formation of cathode/electrolyte interphase(CEI)films.This composite CEI film plays a crucial role in suppressing the serious decomposition of the electrolyte at high voltage.展开更多
The microstructure and corrosion behavior of the as-homogenized and as-extruded Mg-xLi-3Al-2Zn-0.5Y alloys(x=4,8,12,wt.%)were studied.The results show that as the Li content increases from 4%to 12%,the matrix transfer...The microstructure and corrosion behavior of the as-homogenized and as-extruded Mg-xLi-3Al-2Zn-0.5Y alloys(x=4,8,12,wt.%)were studied.The results show that as the Li content increases from 4%to 12%,the matrix transfers from singleα-Mg phase,(α-Mg+β-Li)dual phase to singleβ-Li phase.A mixed corrosion feature of intergranular corrosion and pitting corrosion occurs in the Mg-4Li-3Al-2Zn-0.5Y and Mg-12Li-3Al-2Zn-0.5Y alloys.The former is related to the precipitated AlLi phase along the grain boundaries,and the latter is related to the high potential difference between the second phase and the matrix.The corrosion resistance of the as-extruded alloys is better than that of the as-homogenized alloys.The superior corrosion resistance of the as-extruded Mg-8Li-3Al-2Zn-0.5Y alloy with the lowest corrosion rate(P_(W)=(0.63±0.26)mm/a)is attributed to the more uniform distribution of second phases,the protectiveα-Mg phase via sacrificing theβ-Li phase and the relatively integrated oxide film.展开更多
Crystallization annealing is a crucial process for the formation of the ferroelectric phase in HfO_(2)-based ferroelectric thin films.Here,we systematically investigate the impact of the annealing process,with tempera...Crystallization annealing is a crucial process for the formation of the ferroelectric phase in HfO_(2)-based ferroelectric thin films.Here,we systematically investigate the impact of the annealing process,with temperature varied from 350℃to 550℃,on the electricity,ferroelectricity and reliability of a Hf_(0.5)Zr_(0.5)O_(2)(HZO;7.5 nm)film capacitor.It was found that HZO film annealed at a low temperature of 400℃can effectively suppress the formation of the monoclinic phase and reduce the leakage current.HZO film annealed at 400℃also exhibits better ferroelectric properties than those annealed at 350℃and 550℃.Specifically,the 400℃-annealed HZO film shows an outstanding 2Pr value of 54.6μC·cm^(-2)at±3.0 MV·cm^(-1),which is relatively high compared with previously reported values for HZO film under the same electric field and annealing temperature.When the applied electric field increases to±5.0 MV·cm^(-1),the 2Pr value can reach a maximum of 69.6μC·cm^(-2).In addition,the HZO films annealed at 400℃and 550℃can endure up to bout 2.3×10^(8)cycles under a cycling field of 2.0 MV·cm^(-1)before the occurrence of breakdown.In the 400℃-annealed HZO film,72.1%of the initial polarization is maintained while only 44.9%is maintained in the 550℃-annealed HZO film.Our work demonstrates that HZO film with a low crystallization temperature(400℃)has quite a high ferroelectric polarization,which is of significant importance in applications in ferroelectric memory and negative capacitance transistors.展开更多
(Na0.5K0.5)NbO3 (NKN) lead free thin films were synthesized by means of an acetic acid based sol-gel process on Pt/Ti/SiO2/Si substrates. Na-acetate, K-acetate and Nb-pentaethoxide were used as metal precursors an...(Na0.5K0.5)NbO3 (NKN) lead free thin films were synthesized by means of an acetic acid based sol-gel process on Pt/Ti/SiO2/Si substrates. Na-acetate, K-acetate and Nb-pentaethoxide were used as metal precursors and acetic acid as the solvent. The effect of different calcination temperatures on the properties of the NKN films was investigated by X-ray diffraction, scanning electron microscopy, leakage current and hysteresis measurements. Low calcination temperatures led to low currents at high electric fields whereas high calcination temperatures led to low currents at low electric fields. Based on these findings calcination at low temperature was combined with a post annealing treatment. Low leakage currents of 4×10^-4 A/cm2 at 150 kV/cm and 2Pr and 2Ec values of 28 μC/cm2 and 150 kV/cm, respectively, could be obtained. All films were single phase NKN with random crystal orientations and no crack or pore formation was visible on the surface.展开更多
This paper reports the improvement of electrical,ferroelectric and endurance of Hf_(0.5)Zr_(0.5)O_(2)(HZO)thinfilm capacitors by implementing W electrode.The W/HZO/W capacitor shows excellent pristine 2 P_(r)values of...This paper reports the improvement of electrical,ferroelectric and endurance of Hf_(0.5)Zr_(0.5)O_(2)(HZO)thinfilm capacitors by implementing W electrode.The W/HZO/W capacitor shows excellent pristine 2 P_(r)values of 45.1 gC/cm^(2)at±6 V,which are much higher than those of TiN/HZO/W(34.4μC/cm^(2))and W/HZO/TiN(26.9μC/cm^(2))capacitors.Notably,the maximum initial 2 P_(r)value of W/HZO/W capacitor can reach as high as 57.9μC/cm^(2)at±7.5 V.These strong ferroelectric polarization effects are ascribed to the W electrode with a fairly low thermal expansion coefficient which provides a larger in-plane tensile strain compared with TiN electrode,allowing for enhancement of o-phase formation.Moreover,the W/HZO/W capacitor also exhibits higher endurance,smaller wake-up effect(10.1%)and superior fatigue properties up to 1.5×10^(10)cycles compared to the TiN/HZO/W and W/HZO/TiN capacitors.Such improvements of W/HZO/W capacitor are mainly due to the decreased leakage current by more than an order of magnitude compared to the W/HZO/TiN capacitor.These results demonstrate that capping electrode material plays an important role in the enhancement of o-phase formation,reduces oxygen vacancies,mitigates wake-up effect and improves reliability.展开更多
Epitaxial growth of the Lag0.5Sr0.5CoO3(LSCO) thin films has been realized on LaAl03, SrTiO3 and MgO substrates by pulsed laser deposition. The epitaxial growth behavior and the electrical transport properties of thes...Epitaxial growth of the Lag0.5Sr0.5CoO3(LSCO) thin films has been realized on LaAl03, SrTiO3 and MgO substrates by pulsed laser deposition. The epitaxial growth behavior and the electrical transport properties of these films were studied systematically. The temperature dependencies of the resistivity of the film have been determined. Studies indicate that close dependencies exist between the crystal structures and the electrical transport properties of the epitaxial LSCO films, and that the epitaxial thin films are of low resistivity and metallic conductive features. The epitaxial films deposited on the LaAlO3 substrates at about 700℃ possess the optimal properties compared with the others. Discussions of the dependencies and the mechanisms of the epitaxial structures on the electrical transport properties of the LSCO films have been made.展开更多
基金Project supported by the Fund from the Ministry of Science and Technology(MOST)of China(Grant No.2018YFE0202700)the National Natural Science Foundation of China(Grant Nos.11974422 and 12104504)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000)the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant No.22XNKJ30)。
文摘Hafnia-based ferroelectric materials, like Hf_(0.5)Zr_(0.5)O_(2)(HZO), have received tremendous attention owing to their potentials for building ultra-thin ferroelectric devices. The orthorhombic(O)-phase of HZO is ferroelectric but metastable in its bulk form under ambient conditions, which poses a considerable challenge to maintaining the operation performance of HZO-based ferroelectric devices. Here, we theoretically addressed this issue that provides parameter spaces for stabilizing the O-phase of HZO thin-films under various conditions. Three mechanisms were found to be capable of lowering the relative energy of the O-phase, namely, more significant surface-bulk portion of(111) surfaces, compressive c-axis strain,and positive electric fields. Considering these mechanisms, we plotted two ternary phase diagrams for HZO thin-films where the strain was applied along the in-plane uniaxial and biaxial, respectively. These diagrams indicate the O-phase could be stabilized by solely shrinking the film-thickness below 12.26 nm, ascribed to its lower surface energies. All these results shed considerable light on designing more robust and higher-performance ferroelectric devices.
基金Projects(5110205551462005)supported by the National Natural Science Foundation of China
文摘Thick-film thermistor with negative temperature coefficient(NTC), low room-temperature resistivity and modest thermistor constant was screen-printed on the alumina substrate by the combination of 30.94III0.04II0.02 B OBi Coa Co with Ba0.5Bi0.5Fe0.9Sn0.1O3. The electrical properties of the thick films were characterized by a digital multimeter, a Keithley 2400 and an impedance analyzer. The results show that with the Ba0.5Bi0.5Fe0.9Sn0.1O3 content increasing from 0.05 to 0.25, the values of room-temperature resistivity, thermistor constant and peak voltage of the thick films increases and are in the ranges of 1.47-26.5 ?·cm, 678-1345 K and 18.9-47.0 V, respectively. The corresponding current at the peak voltage of the thick films decreases and is in the range of 40-240 m A. The impedance spectroscopy measurement demonstrates that the as-prepared thick films show the abnormal electrical heterogeneous microstructure, consisting of high-resistive grains and less resistive grain boundary regions. It can be concluded that the addition of Ba0.5Bi0.5Fe0.9Sn0.1O3 into 30.94III0.04II0.02 Ba Co OBi Co improves the thermistor behavior and but also deteriorates the current characteristics.
文摘In this work, the band structure and optical-related properties of CuIn0.5Ga0.5Se2 thin film are presented. The calculation is performed by the full-potential linearized augmented plane wave (FPLAPW) method. The spin-orbit coupling is considered. The result for the dielectric function is in good agreement with earlier experimental measurements and simulations. Based on the complex dielectric function, the dielectric constant, the absorption coefficient, the complex refractive index and the reflectivity at normal incidence are explored. We found that they are comparable with the earlier results.
基金financially supported by National Key Research and Development Program of China(Grant no.2018YFB010440)the National Natural Science Foundation of China(Grant nos.21761132030,21621091).
文摘Ethyl-(2,2,2-trifluoroethyl)carbonate(ETFEC)is investigated as a solvent component in high-voltage electrolytes for LiNi0.5Mn1.5O4(LNMO).Our results show that the self-discharge behavior and the high temperature cycle performance can be significantly improved by the addition of 10%ETFEC into the normal carbonate electrolytes,e.g.,the capacity retention improved from 65.3%to 77.1%after 200 cycles at 60℃.The main reason can be ascribed to the high stability of ETFEC which prevents large oxidation of the electrolyte on the cathode surface.In addition,we also explore the feasibility of electrolytes using single fluoriated-solvents with and without additives.Our results show that the cycle performance of LNMO material can be greatly improved in 1 MLiPF6+pure ETFEC-solvent system with 2 wt%ethylene carbonate(EC)or ethylene sulfate(DTD).The capacity retention of the LNMO materials is 93%after 300 cycles,even better than that of carbonate-based electrolytes.It is shown that the additives are oxidized on the surface of LNMO particles and contribute to the formation of cathode/electrolyte interphase(CEI)films.This composite CEI film plays a crucial role in suppressing the serious decomposition of the electrolyte at high voltage.
基金financially supported by the National Natural Science Foundation of China(Nos.51771115,51775334,51821001,U2037601)Open Fund of State Key Laboratory of Advanced Forming Technology and Equipment(No.SKL2020005)。
文摘The microstructure and corrosion behavior of the as-homogenized and as-extruded Mg-xLi-3Al-2Zn-0.5Y alloys(x=4,8,12,wt.%)were studied.The results show that as the Li content increases from 4%to 12%,the matrix transfers from singleα-Mg phase,(α-Mg+β-Li)dual phase to singleβ-Li phase.A mixed corrosion feature of intergranular corrosion and pitting corrosion occurs in the Mg-4Li-3Al-2Zn-0.5Y and Mg-12Li-3Al-2Zn-0.5Y alloys.The former is related to the precipitated AlLi phase along the grain boundaries,and the latter is related to the high potential difference between the second phase and the matrix.The corrosion resistance of the as-extruded alloys is better than that of the as-homogenized alloys.The superior corrosion resistance of the as-extruded Mg-8Li-3Al-2Zn-0.5Y alloy with the lowest corrosion rate(P_(W)=(0.63±0.26)mm/a)is attributed to the more uniform distribution of second phases,the protectiveα-Mg phase via sacrificing theβ-Li phase and the relatively integrated oxide film.
基金Hainan Provincial Natural Science Foundation of China(Grant No.523QN257)Collegelevel Scientific Research Foundation of Qiongtai Normal University(Grant No.qtqn202215)+6 种基金the Innovation and Entrepreneurship Training Program for College Students(Grant No.202213811016)Science and Technology Program of Henan(Grant No.232102210182)Scientific Research Foundation of Henan Normal University(Grant No.20230196)Natural Science Foundation of Shandong Province(Grant No.ZR2023QA047)Foundation of PeiXin(Grant No.2023PX027)Science and technology smes innovation ability improvement project(Grant No.2023TSGC0154)the National Natural Science Foundation of China(Grant No.62174059)。
文摘Crystallization annealing is a crucial process for the formation of the ferroelectric phase in HfO_(2)-based ferroelectric thin films.Here,we systematically investigate the impact of the annealing process,with temperature varied from 350℃to 550℃,on the electricity,ferroelectricity and reliability of a Hf_(0.5)Zr_(0.5)O_(2)(HZO;7.5 nm)film capacitor.It was found that HZO film annealed at a low temperature of 400℃can effectively suppress the formation of the monoclinic phase and reduce the leakage current.HZO film annealed at 400℃also exhibits better ferroelectric properties than those annealed at 350℃and 550℃.Specifically,the 400℃-annealed HZO film shows an outstanding 2Pr value of 54.6μC·cm^(-2)at±3.0 MV·cm^(-1),which is relatively high compared with previously reported values for HZO film under the same electric field and annealing temperature.When the applied electric field increases to±5.0 MV·cm^(-1),the 2Pr value can reach a maximum of 69.6μC·cm^(-2).In addition,the HZO films annealed at 400℃and 550℃can endure up to bout 2.3×10^(8)cycles under a cycling field of 2.0 MV·cm^(-1)before the occurrence of breakdown.In the 400℃-annealed HZO film,72.1%of the initial polarization is maintained while only 44.9%is maintained in the 550℃-annealed HZO film.Our work demonstrates that HZO film with a low crystallization temperature(400℃)has quite a high ferroelectric polarization,which is of significant importance in applications in ferroelectric memory and negative capacitance transistors.
文摘(Na0.5K0.5)NbO3 (NKN) lead free thin films were synthesized by means of an acetic acid based sol-gel process on Pt/Ti/SiO2/Si substrates. Na-acetate, K-acetate and Nb-pentaethoxide were used as metal precursors and acetic acid as the solvent. The effect of different calcination temperatures on the properties of the NKN films was investigated by X-ray diffraction, scanning electron microscopy, leakage current and hysteresis measurements. Low calcination temperatures led to low currents at high electric fields whereas high calcination temperatures led to low currents at low electric fields. Based on these findings calcination at low temperature was combined with a post annealing treatment. Low leakage currents of 4×10^-4 A/cm2 at 150 kV/cm and 2Pr and 2Ec values of 28 μC/cm2 and 150 kV/cm, respectively, could be obtained. All films were single phase NKN with random crystal orientations and no crack or pore formation was visible on the surface.
基金financially supported by the National Natural Science Foundation of China(No.51872099)the Hong Kong Research Grant Council(No.15300619)+2 种基金the Science and Technology Program of Guangzhou(No.201905-0001)the Guangdong Science and Technology Project-International Cooperation(No.2021A0505030064)financial support by the Hong Kong Scholars Program(No.XJ2019006)。
文摘This paper reports the improvement of electrical,ferroelectric and endurance of Hf_(0.5)Zr_(0.5)O_(2)(HZO)thinfilm capacitors by implementing W electrode.The W/HZO/W capacitor shows excellent pristine 2 P_(r)values of 45.1 gC/cm^(2)at±6 V,which are much higher than those of TiN/HZO/W(34.4μC/cm^(2))and W/HZO/TiN(26.9μC/cm^(2))capacitors.Notably,the maximum initial 2 P_(r)value of W/HZO/W capacitor can reach as high as 57.9μC/cm^(2)at±7.5 V.These strong ferroelectric polarization effects are ascribed to the W electrode with a fairly low thermal expansion coefficient which provides a larger in-plane tensile strain compared with TiN electrode,allowing for enhancement of o-phase formation.Moreover,the W/HZO/W capacitor also exhibits higher endurance,smaller wake-up effect(10.1%)and superior fatigue properties up to 1.5×10^(10)cycles compared to the TiN/HZO/W and W/HZO/TiN capacitors.Such improvements of W/HZO/W capacitor are mainly due to the decreased leakage current by more than an order of magnitude compared to the W/HZO/TiN capacitor.These results demonstrate that capping electrode material plays an important role in the enhancement of o-phase formation,reduces oxygen vacancies,mitigates wake-up effect and improves reliability.
基金Project supported by the National Natural Science Foundation of China (Grant No. 19574003 and No. 19674001).
文摘Epitaxial growth of the Lag0.5Sr0.5CoO3(LSCO) thin films has been realized on LaAl03, SrTiO3 and MgO substrates by pulsed laser deposition. The epitaxial growth behavior and the electrical transport properties of these films were studied systematically. The temperature dependencies of the resistivity of the film have been determined. Studies indicate that close dependencies exist between the crystal structures and the electrical transport properties of the epitaxial LSCO films, and that the epitaxial thin films are of low resistivity and metallic conductive features. The epitaxial films deposited on the LaAlO3 substrates at about 700℃ possess the optimal properties compared with the others. Discussions of the dependencies and the mechanisms of the epitaxial structures on the electrical transport properties of the LSCO films have been made.