Microstructure evolution of the cast Mg-9Gd-2Er-0.4Zr alloy during solid solution treatment at temperature of 460-520 ℃ for 3-12 h was investigated by using optical microscope(OM),scanning electron microscope(SEM...Microstructure evolution of the cast Mg-9Gd-2Er-0.4Zr alloy during solid solution treatment at temperature of 460-520 ℃ for 3-12 h was investigated by using optical microscope(OM),scanning electron microscope(SEM) and transmission electron microscope(TEM).The results indicated that the grain size and the shape of second phase were obviously changed with time and/or temperature going on.At 460 ℃ for 3 h,the morphology of the Mg5(GdEr) phase was changed into fragmentized island morphology and the volume faction of the phase decreased.After solution solid treatment at 460 ℃ for 6 h,the Mg5(GdEr) phase was already completely dissolved,but some cuboid-shaped RE-rich phase precipitated.As the temperature increased,the morphology of the Mg5(GdEr) phase was transformed into the same morphology as that at 460 ℃ for 6 h.It was suggested that the microstructure evolution of the alloy during the solid solution treatment was concluded as follows:Mg5(GdEr) eutectic phase→Gd/Er atom diffusing into matrix→spheroidic Mg5(GdEr) phase→cuboid-shaped RE-rich phase→grain boundary immigration.展开更多
Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step s...Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step solid solution treatments on microstructure andδphase precipitation of Inconel 718 alloy were studied,and the transformation mechanism fromγ″metastable phase toδphase was clarified.The precipitates were statistically analyzed by X-ray diffractometry.The results show that theδphase content firstly increased,and then decreased with the temperature of the second-step solid solution.The changes in microstructure andδphase were studied by scanning electron microscopy and transmission electron microscopy.An intragranularδphase formed in Inconel 718 alloy at the second-[100]_(δ)[011]γ step solid solution temperature of 925℃,and its orientation relationship withγmatrix was determined as//and(010)_(δ)//(111)γ.Furthermore,the Vickers hardness of different heat treatment samples was measured,and the sample treated by second-step solid solution at 1010℃ reached the maximum hardness of HV 446.84.展开更多
The effects of on-line solution, off-line solution and aging heat treatment on the microstructure and hardness of the die-cast AZ91D alloys were investigated. Brinell hardness of die-cast AZ91D alloy increases through...The effects of on-line solution, off-line solution and aging heat treatment on the microstructure and hardness of the die-cast AZ91D alloys were investigated. Brinell hardness of die-cast AZ91D alloy increases through on-line solution and off-line aging treatment but decreases after off-line solution treatment. By X-ray diffractometry, optical microscopy, differential thermal analysis, scanning electron microscopy and X-ray energy dispersive spectroscopy, it is found that the microstructures of the die-cast AZ91D magnesium alloy before and after on-line solution and off-line aging are similar, consisting of α-Mg and β-Al12Mg17. The precipitation of Al element is prevented by on-line solution so that the effect of solid solution strengthening is enhanced. The β-Al12Mg17 phases precipitate from supersaturated Mg solid solution after off-line aging treatment, and lead to microstructure refinement of AZ91D alloy, so the effect of precipitation hardening is enhanced. The β-Al12Mg17 phases dissolve in the substructure after off-line solution treatment, which leads to that the grain boundary strengthening phase is reduced significantly and the hardness of die cast AZ91D is reduced.展开更多
The influence of solid solution treatment on the microstructure and corrosion resistance of as-cast Mg_(95.5)Zn_(1.5)Y_(3) alloy is characterized.The microstructure of the as-cast Mg_(95.5)Zn_(1.5)Y_(3) alloy mainly c...The influence of solid solution treatment on the microstructure and corrosion resistance of as-cast Mg_(95.5)Zn_(1.5)Y_(3) alloy is characterized.The microstructure of the as-cast Mg_(95.5)Zn_(1.5)Y_(3) alloy mainly consisted ofα-Mg,W(Mg_(3)Zn_(3)Y_(2))phase,and the long period stacking ordered(LPSO)(Mg_(12)ZnY)phase.After solid solution treatment,most of the W phase disappears gradually with increasing solution treatment time,with only a small amount of W phase distributed as particle.The LPSO phase slightly dissolved into substrate,and its morphology transitions from blocky shape to rod shape.Solid solution treatment of Mg_(95.5)Zn_(1.5)Y_(3) exhibits excellent corrosion resistance,because the Y and Zn atoms became enriched in the matrix and the changed morphologies of the LPSO and W phases were modified through heat treatment.The alloy created with solid solution treatment at 520 ℃ for 10 hours exhibits corrosion potential of−1.419 V,suggesting a significant improvement in corrosion performance.展开更多
The mechanical properties of super saturated solid solution Fe60Cu40 alloy has been investigated using compression test. The results show that the grain precipitation and phase transformation occurs during compressive...The mechanical properties of super saturated solid solution Fe60Cu40 alloy has been investigated using compression test. The results show that the grain precipitation and phase transformation occurs during compressive deformation resulting in large work-hardening ability, high strength and large ductility. Our results demonstrate that this novel architecture offers a design pathway towards a new generation of strong materials with large ductility.展开更多
In this study,the morphology,composition and evolution of intermetallics in Al-7Si-0.3Mg,Al-7Si-0.3Mg-0.47Hf,Al-7Si-0.3Mg-0.16 Zr and Al-7Si-0.3Mg-0.14Zr-0.44Hf alloys were characterized by optical microscope(OM),scan...In this study,the morphology,composition and evolution of intermetallics in Al-7Si-0.3Mg,Al-7Si-0.3Mg-0.47Hf,Al-7Si-0.3Mg-0.16 Zr and Al-7Si-0.3Mg-0.14Zr-0.44Hf alloys were characterized by optical microscope(OM),scanning electron microscope(SEM)with energy-dispersive spectrometer(EDS) and transmission electron microscope(TEM).The AlSiZr,AlSiHf and AlSiZrHf phases are formed with additions of Zr and/or Hf in base alloy during solidification,especially the AlZrHf primary particles.The three-dimensional morphology of the AlZrHf particle evolves from 10-polyhedron-like to compressed cube-like during solidification.The new AlZrHf phase experiences partial dissolution after solution treatment,while the others remain in the initial morphology.High Si contents lead to form thermally stable Zr/Hfrich precipitates in Zr/Hf-containing alloys during solution treatment,especially the nanobelt-like Si2Zr,Si2Hf and Si2(Zr,Hf) precipitates.Particular orientation relationships and the growth mechanism are identified.The finding of the work broadens the elevated temperature application of Al-Si-Mg in modern automotive aluminum engine.展开更多
An Al-Mn-Fe-Si model alloy was subjected to two homogenization treatments, to achieve materials with different levels of Mn in solid solution and dispersoid densities, followed by cold rolling and back-annealing. Char...An Al-Mn-Fe-Si model alloy was subjected to two homogenization treatments, to achieve materials with different levels of Mn in solid solution and dispersoid densities, followed by cold rolling and back-annealing. Characterization of homogenization and deformation structures with respect to the effect of different microchemistries and strains on the structures was performed. Time-temperature-transformation (TTT) diagram with respect to precipitation and recrystallisation as a basis for analysis of the degree of concurrent precipitation was established. The TTT-diagram shows a strong effect of Mn concentration in solid solution and dispersoid density on the softening behavior. Recrystallization which finishes without the effect of concurrent precipitation results in an even, fine and equiaxed grain structure. Precipitation prior to or during recrystallization (concurrent) does retard the softening kinetics and leads to a coarse grain structure. However, the effect also depends on the duration of recrystallization and amount of precipitation. Recrystallization proceeding over a long time combined with a large amount of concurrent precipitation has a strong effect, otherwise the effect will be limited. Pre-existing fine and dense dispersoids (mean size 0.1 μm) before back-annealing do also lead to a coarse grain structure after recrystallization no matter whether additional concurrent precipitation occurs.展开更多
基金Projects(2011BAE22B01,2011BAE22B04-2) supported by the National Key Technology R&D Program during the 12th Five-Year PeriodProjects(51071004,51101002) supported by the National Natural Science Foundation of China
文摘Microstructure evolution of the cast Mg-9Gd-2Er-0.4Zr alloy during solid solution treatment at temperature of 460-520 ℃ for 3-12 h was investigated by using optical microscope(OM),scanning electron microscope(SEM) and transmission electron microscope(TEM).The results indicated that the grain size and the shape of second phase were obviously changed with time and/or temperature going on.At 460 ℃ for 3 h,the morphology of the Mg5(GdEr) phase was changed into fragmentized island morphology and the volume faction of the phase decreased.After solution solid treatment at 460 ℃ for 6 h,the Mg5(GdEr) phase was already completely dissolved,but some cuboid-shaped RE-rich phase precipitated.As the temperature increased,the morphology of the Mg5(GdEr) phase was transformed into the same morphology as that at 460 ℃ for 6 h.It was suggested that the microstructure evolution of the alloy during the solid solution treatment was concluded as follows:Mg5(GdEr) eutectic phase→Gd/Er atom diffusing into matrix→spheroidic Mg5(GdEr) phase→cuboid-shaped RE-rich phase→grain boundary immigration.
基金supported by the National Natural Science Foundation of China(Nos.52201203 and 52171107)the Hebei Provincial Natural Science Foundation,China(No.E2021501026)+1 种基金the National Natural Science Foundation of China-Joint Fund of Iron and Steel Research(No.U1960204)the“333”Talent Project of Hebei Province,China(No.B20221001).
文摘Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step solid solution treatments on microstructure andδphase precipitation of Inconel 718 alloy were studied,and the transformation mechanism fromγ″metastable phase toδphase was clarified.The precipitates were statistically analyzed by X-ray diffractometry.The results show that theδphase content firstly increased,and then decreased with the temperature of the second-step solid solution.The changes in microstructure andδphase were studied by scanning electron microscopy and transmission electron microscopy.An intragranularδphase formed in Inconel 718 alloy at the second-[100]_(δ)[011]γ step solid solution temperature of 925℃,and its orientation relationship withγmatrix was determined as//and(010)_(δ)//(111)γ.Furthermore,the Vickers hardness of different heat treatment samples was measured,and the sample treated by second-step solid solution at 1010℃ reached the maximum hardness of HV 446.84.
基金Projects (2011BAE22B01, 2011BAE22B06) supported by the National Key Technologies R&D Program During the 12th Five-Year Plan Period of ChinaProject (2010NC018) supported by the Innovation Fund of Inner Mongolia University of Science and Technology, China
文摘The effects of on-line solution, off-line solution and aging heat treatment on the microstructure and hardness of the die-cast AZ91D alloys were investigated. Brinell hardness of die-cast AZ91D alloy increases through on-line solution and off-line aging treatment but decreases after off-line solution treatment. By X-ray diffractometry, optical microscopy, differential thermal analysis, scanning electron microscopy and X-ray energy dispersive spectroscopy, it is found that the microstructures of the die-cast AZ91D magnesium alloy before and after on-line solution and off-line aging are similar, consisting of α-Mg and β-Al12Mg17. The precipitation of Al element is prevented by on-line solution so that the effect of solid solution strengthening is enhanced. The β-Al12Mg17 phases precipitate from supersaturated Mg solid solution after off-line aging treatment, and lead to microstructure refinement of AZ91D alloy, so the effect of precipitation hardening is enhanced. The β-Al12Mg17 phases dissolve in the substructure after off-line solution treatment, which leads to that the grain boundary strengthening phase is reduced significantly and the hardness of die cast AZ91D is reduced.
基金the National Natural Science Foundation of China(51361010,51665012)supported by China Scholarship Council.
文摘The influence of solid solution treatment on the microstructure and corrosion resistance of as-cast Mg_(95.5)Zn_(1.5)Y_(3) alloy is characterized.The microstructure of the as-cast Mg_(95.5)Zn_(1.5)Y_(3) alloy mainly consisted ofα-Mg,W(Mg_(3)Zn_(3)Y_(2))phase,and the long period stacking ordered(LPSO)(Mg_(12)ZnY)phase.After solid solution treatment,most of the W phase disappears gradually with increasing solution treatment time,with only a small amount of W phase distributed as particle.The LPSO phase slightly dissolved into substrate,and its morphology transitions from blocky shape to rod shape.Solid solution treatment of Mg_(95.5)Zn_(1.5)Y_(3) exhibits excellent corrosion resistance,because the Y and Zn atoms became enriched in the matrix and the changed morphologies of the LPSO and W phases were modified through heat treatment.The alloy created with solid solution treatment at 520 ℃ for 10 hours exhibits corrosion potential of−1.419 V,suggesting a significant improvement in corrosion performance.
文摘The mechanical properties of super saturated solid solution Fe60Cu40 alloy has been investigated using compression test. The results show that the grain precipitation and phase transformation occurs during compressive deformation resulting in large work-hardening ability, high strength and large ductility. Our results demonstrate that this novel architecture offers a design pathway towards a new generation of strong materials with large ductility.
基金financially supported by the National Natural Science Foundation of China(No.51271209)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.51421001)
文摘In this study,the morphology,composition and evolution of intermetallics in Al-7Si-0.3Mg,Al-7Si-0.3Mg-0.47Hf,Al-7Si-0.3Mg-0.16 Zr and Al-7Si-0.3Mg-0.14Zr-0.44Hf alloys were characterized by optical microscope(OM),scanning electron microscope(SEM)with energy-dispersive spectrometer(EDS) and transmission electron microscope(TEM).The AlSiZr,AlSiHf and AlSiZrHf phases are formed with additions of Zr and/or Hf in base alloy during solidification,especially the AlZrHf primary particles.The three-dimensional morphology of the AlZrHf particle evolves from 10-polyhedron-like to compressed cube-like during solidification.The new AlZrHf phase experiences partial dissolution after solution treatment,while the others remain in the initial morphology.High Si contents lead to form thermally stable Zr/Hfrich precipitates in Zr/Hf-containing alloys during solution treatment,especially the nanobelt-like Si2Zr,Si2Hf and Si2(Zr,Hf) precipitates.Particular orientation relationships and the growth mechanism are identified.The finding of the work broadens the elevated temperature application of Al-Si-Mg in modern automotive aluminum engine.
基金Project (KMB:193179/I40) supported by the Research Council of Norway
文摘An Al-Mn-Fe-Si model alloy was subjected to two homogenization treatments, to achieve materials with different levels of Mn in solid solution and dispersoid densities, followed by cold rolling and back-annealing. Characterization of homogenization and deformation structures with respect to the effect of different microchemistries and strains on the structures was performed. Time-temperature-transformation (TTT) diagram with respect to precipitation and recrystallisation as a basis for analysis of the degree of concurrent precipitation was established. The TTT-diagram shows a strong effect of Mn concentration in solid solution and dispersoid density on the softening behavior. Recrystallization which finishes without the effect of concurrent precipitation results in an even, fine and equiaxed grain structure. Precipitation prior to or during recrystallization (concurrent) does retard the softening kinetics and leads to a coarse grain structure. However, the effect also depends on the duration of recrystallization and amount of precipitation. Recrystallization proceeding over a long time combined with a large amount of concurrent precipitation has a strong effect, otherwise the effect will be limited. Pre-existing fine and dense dispersoids (mean size 0.1 μm) before back-annealing do also lead to a coarse grain structure after recrystallization no matter whether additional concurrent precipitation occurs.