The authors provided a simple method for calculating Wiener numbers of molecular graphs with symmetry in 1997.This paper intends to further improve on it and simplifies the calculation of the Wiener numbers of the mol...The authors provided a simple method for calculating Wiener numbers of molecular graphs with symmetry in 1997.This paper intends to further improve on it and simplifies the calculation of the Wiener numbers of the molecular graphs.展开更多
The double loop network(DLN)is a circulant digraph with n nodes and outdegree 2.It is an important topological structure of computer interconnection networks and has been widely used in the designing of local area net...The double loop network(DLN)is a circulant digraph with n nodes and outdegree 2.It is an important topological structure of computer interconnection networks and has been widely used in the designing of local area networks and distributed systems.Given the number n of nodes,how to construct a DLN which has minimum diameter?This problem has attracted great attention.A related and longtime unsolved problem is:for any given non-negative integer k,is there an infinite family of k-tight optimal DLN?In this paper,two main results are obtained:(1)for any k≥0,the infinite families of k-tight optimal DLN can be constructed,where the number n(k,e,c)of their nodes is a polynomial of degree 2 in e with integral coefficients containing a parameter c.(2)for any k≥0, an infinite family of singular k-tight optimal DLN can be constructed.展开更多
For every two vertices u and v in a graph G, a u-v geodesic is a shortest path between u and v. Let I(u, v) denote the set of all vertices lying on a u-v geodesic. For a vertex subset S, let I(S) denote the union of a...For every two vertices u and v in a graph G, a u-v geodesic is a shortest path between u and v. Let I(u, v) denote the set of all vertices lying on a u-v geodesic. For a vertex subset S, let I(S) denote the union of all I(u, v) for u, v ∈ S. The geodetic number g(G) of a graph G is the minimum cardinality of a set S with I(S) = V (G). For a digraph D, there is analogous terminology for the geodetic number g(D). The geodetic spectrum of a graph G, denoted by S(G), is the set of geodetic numbers of all orientations of graph G. The lower geodetic number is g ?(G) = minS(G) and the upper geodetic number is g +(G) = maxS(G). The main purpose of this paper is to study the relations among g(G), g ?(G) and g +(G) for connected graphs G. In addition, a sufficient and necessary condition for the equality of g(G) and g(G × K 2) is presented, which improves a result of Chartrand, Harary and Zhang.展开更多
文摘The authors provided a simple method for calculating Wiener numbers of molecular graphs with symmetry in 1997.This paper intends to further improve on it and simplifies the calculation of the Wiener numbers of the molecular graphs.
基金This work was supported by the Natural Science Foundation of Fujian Province(Grant No.A0510021)Science and Technology Three Projects Foundation of Fujian Province(Grant No.2006F5068)
文摘The double loop network(DLN)is a circulant digraph with n nodes and outdegree 2.It is an important topological structure of computer interconnection networks and has been widely used in the designing of local area networks and distributed systems.Given the number n of nodes,how to construct a DLN which has minimum diameter?This problem has attracted great attention.A related and longtime unsolved problem is:for any given non-negative integer k,is there an infinite family of k-tight optimal DLN?In this paper,two main results are obtained:(1)for any k≥0,the infinite families of k-tight optimal DLN can be constructed,where the number n(k,e,c)of their nodes is a polynomial of degree 2 in e with integral coefficients containing a parameter c.(2)for any k≥0, an infinite family of singular k-tight optimal DLN can be constructed.
基金the National Natural Science Foundation of China(Grant Nos.10301010,60673048)the Science and Technology Commission of Shanghai Municipality(Grant No.04JC14031)
文摘For every two vertices u and v in a graph G, a u-v geodesic is a shortest path between u and v. Let I(u, v) denote the set of all vertices lying on a u-v geodesic. For a vertex subset S, let I(S) denote the union of all I(u, v) for u, v ∈ S. The geodetic number g(G) of a graph G is the minimum cardinality of a set S with I(S) = V (G). For a digraph D, there is analogous terminology for the geodetic number g(D). The geodetic spectrum of a graph G, denoted by S(G), is the set of geodetic numbers of all orientations of graph G. The lower geodetic number is g ?(G) = minS(G) and the upper geodetic number is g +(G) = maxS(G). The main purpose of this paper is to study the relations among g(G), g ?(G) and g +(G) for connected graphs G. In addition, a sufficient and necessary condition for the equality of g(G) and g(G × K 2) is presented, which improves a result of Chartrand, Harary and Zhang.