AIM: To explore the relationship between DNA methyltransferase 1 (DNMT1) and hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) and its biological significance in primary HCC. METHODS: We carried o...AIM: To explore the relationship between DNA methyltransferase 1 (DNMT1) and hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) and its biological significance in primary HCC. METHODS: We carried out an immunohistochemical examination of DNMT1 in both HCC and paired nonneoplastic liver tissues from Chinese subjects. DNMT1 mRNA was further examined in HCC cell lines by real-time PCR. We inhibited DNMT1 using siRNA and detected the effect of depletion of DNMT1 on cell proliferation ability and cell apoptosis in the HCC celt line SMMC-7721. RESULTS: DNMT1 protein expression was increased in HCCs compared to histologically normal nonneoplastic liver tissues and the incidence of DNMT1 immunoreactivity in HCCs correlated significantly with poor tumor differentiation (P = 0.014). There were more cases with DNMT1 overexpression in HCC with HBV (42.85%) than in HCC without HBV (28.57%). However, no significant difference in DNMT1 expression was found in HBV-positive and HBV-negative cases in the Chinese HCC group. There was a trend that DNMT1 RNA expression increased more in HCC cell lines than in pericarcinoma cell lines and normal liver cell lines. In addition, we inhibited DNMT1 using siRNA in the SMMC-7721 HCC cell line and found depletion of DNMT1 suppressed cells growth independent of expression of proliferating cell nuclear antigen (PCNA), even in HCC cell lines where DNMT1 was stably decreased. CONCLUSION: The findings implied that DNMT1 plays a key role in HBV-retated hepatocellular tumorigenesis. Depletion of DNMT1 mediates growth suppression in SMMC-7721 cells.展开更多
基金Supported by National Natural Science Foundation of China,No.30470950
文摘AIM: To explore the relationship between DNA methyltransferase 1 (DNMT1) and hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) and its biological significance in primary HCC. METHODS: We carried out an immunohistochemical examination of DNMT1 in both HCC and paired nonneoplastic liver tissues from Chinese subjects. DNMT1 mRNA was further examined in HCC cell lines by real-time PCR. We inhibited DNMT1 using siRNA and detected the effect of depletion of DNMT1 on cell proliferation ability and cell apoptosis in the HCC celt line SMMC-7721. RESULTS: DNMT1 protein expression was increased in HCCs compared to histologically normal nonneoplastic liver tissues and the incidence of DNMT1 immunoreactivity in HCCs correlated significantly with poor tumor differentiation (P = 0.014). There were more cases with DNMT1 overexpression in HCC with HBV (42.85%) than in HCC without HBV (28.57%). However, no significant difference in DNMT1 expression was found in HBV-positive and HBV-negative cases in the Chinese HCC group. There was a trend that DNMT1 RNA expression increased more in HCC cell lines than in pericarcinoma cell lines and normal liver cell lines. In addition, we inhibited DNMT1 using siRNA in the SMMC-7721 HCC cell line and found depletion of DNMT1 suppressed cells growth independent of expression of proliferating cell nuclear antigen (PCNA), even in HCC cell lines where DNMT1 was stably decreased. CONCLUSION: The findings implied that DNMT1 plays a key role in HBV-retated hepatocellular tumorigenesis. Depletion of DNMT1 mediates growth suppression in SMMC-7721 cells.