Gastroesophageal reflux disease(GERD)is a digestive system disease characterized by uncomfortable symptoms caused by reflux of gastric contents.It has increased sharply with the development of my country’s society an...Gastroesophageal reflux disease(GERD)is a digestive system disease characterized by uncomfortable symptoms caused by reflux of gastric contents.It has increased sharply with the development of my country’s society and economy.If there is no reasonable and effective Prevention and treatment measures will inevitably increase the financial burden of patients,and also pose a major threat to the quality of life and health of patients.Cell signal transduction mediated by various receptors participates in the regulation mechanism of the body's various levels of biological functions.By inhibiting or activating its functions,the purpose of curing diseases can be achieved,and cell signal transduction has been used in traditional Chinese medicine.Studying.The theory of"adjusting the central axis"was explored by Professor Xie Sheng through decades of clinical experience.It has been proven in practice to treat GERD.It starts from the model of TCM viscera and expounds that the pathogenesis of GERD involves multiple viscera.Multi-system and multi-factor,explain the correlation of the disease with a variety of zang-fu syndromes,and use this as a basis to guide the clinical use of hidden prescriptions.The back-shu pointer therapy can prevent GERD by correcting the unbalanced state of the viscera and qi machine,and promoting the junction of the two channels of Ren and Du.Based on the theory of"adjusting the hub by the pivot",this article expounds the pathogenesis of GERD from the perspective of traditional Chinese medicine.By consulting the literature and combining with the previous research,it proposes to analyze the methods and methods of Backshu pointer therapy to prevent and treat GERD from the AMPK/ULK1 mediated autophagy pathway.展开更多
AIM To evaluate whether fish oil(FO) can protect liver injury induced by intestinal ischemia/reperfusion(I/R) via the AMPK/SIRT-1/autophagy pathway.METHODS Ischemia in wistar rats was induced by superior mesenteric ar...AIM To evaluate whether fish oil(FO) can protect liver injury induced by intestinal ischemia/reperfusion(I/R) via the AMPK/SIRT-1/autophagy pathway.METHODS Ischemia in wistar rats was induced by superior mesenteric artery occlusion for 60 min and reperfusion for 240 min. One milliliter per day of FO emulsion or normal saline was administered by intraperitoneal injection for 5 consecutive days to each animal. Animals were sacrificed at the end of reperfusion. Blood andtissue samples were collected for analyses. AMPK, SIRT-1, and Beclin-1 expression was determined in lipopolysaccharide(LPS)-stimulated HepG2 cells with or without FO emulsion treatment.RESULTS Intestinal I/R induced significant liver morphological changes and increased serum alanine aminotransferase and aspartate aminotransferase levels. Expression of p-AMPK/AMPK, SIRT-1, and autophagy markers was decreased whereas tumor necrosis factor-α(TNF-α) and malonaldehyde(MDA) were increased. FO emulsion blocked the changes of the above indicators effectively. Besides, in LPS-stimulated HepG2 cells, small interfering RNA(siRNA) targeting AMPK impaired the FO induced increase of p-AMPK, SIRT-1, and Beclin-1 and decrease of TNF-α and MDA. SIRT-1 siRNA impaired the increase of SIRT-1 and Beclin-1 and the decrease of TNF-α and MDA.CONCLUSION Our study indicates that FO may protect the liver against intestinal I/R induced injury through the AMPK/SIRT-1/autophagy pathway.展开更多
Gastric adenocarcinoma(GC) is one of the most common malignancies in the world and one of the most frequent causes of cancer-related death. Autophagy is a highly regulated catabolic pathway responsible for the degra...Gastric adenocarcinoma(GC) is one of the most common malignancies in the world and one of the most frequent causes of cancer-related death. Autophagy is a highly regulated catabolic pathway responsible for the degradation of long-lived proteins and damaged intracellular organelles. However, the mechanism and guiding significance of autophagy in the development and progression of GC have remained to be elucidated. This study aimed to explore the clinicopathological significances and prognostic values of autophagy-related proteins AMBRA1 and Beclin-1 in GC. Quantum dots based immunofluorescence histochemistry(QDs-IHC) was performed to observe the expression of AMBRA1 and Beclin-1 proteins in the tissue microarrays including 163 specimens of GC and 20 noncancerous gastric tissues. Simultaneously, AMBRA1 and Beclin-1 proteins were detected by Western blotting in the 10 fresh GC and corresponding normal gastric tissues. The results showed that the expression levels of both AMBRA1 and Beclin-1 proteins were higher in GC tissues than in noncancerous gastric tissues by QDs-IHC and Western blotting(P〈0.05). High AMBRA1 expression was detected in 90 of 163(55.2%) GCs and high Beclin-1 expression was detected in 83 of 163(50.9%) GCs. High AMBRA1 expression was closely related to depth of invasion, and lymph nodes metastasis(P〈0.05). High expression of Beclin-1 protein was correlated with tumor grade(P〈0.05). Positive correlation was observed between AMBRA1 and Beclin-1. Survival analysis indicated the high expression of AMBRA1 and Beclin-1 was an independent factor in predicting poor overall survival(OS) of GC patients. These findings suggest the high expression of AMBRA1 and Beclin-1 proteins is significantly correlated with GC progression. High AMBRA1 and Beclin-1 expression heralds worse outcome of GC patients, suggesting a novel candidate prognostic marker and a therapeutic target for GC.展开更多
AIM: To investigate if the presence of relevant genetic polymorphisms has effect on the effectual clearance of bacteria by monocytes and granulocytes in patients with Crohn’s disease (CD).
Necroptosis is characterized by programmed necrotic cell death and autophagic activation and might be involved in the death process of dopaminergic neurons in Parkinson's disease. We hypothesized that necrostatin-1 c...Necroptosis is characterized by programmed necrotic cell death and autophagic activation and might be involved in the death process of dopaminergic neurons in Parkinson's disease. We hypothesized that necrostatin-1 could block necroptosis and give protection to dopaminergic neurons. There is likely to be crosstalk between necroptosis and other cell death pathways, such as apoptosis and autophagy. PC12 cells were pretreated with necroststin-1 1 hour before exposure to 6-hydroxydopamine. We examined cell viability, mitochondrial membrane potential and expression patterns of apoptotic and necroptotic death signaling proteins. The results showed that the autophagy/lysosomal pathway is involved in the 6-hydroxydopamine-induced death process of PC12 cells. Mitochondrial disability induced overactive autophagy, increased cathepsin B expression, and diminished Bcl-2 expression. Necrostatin-1 within a certain concentration range(5–30 μM) elevated the viability of PC12 cells, stabilized mitochondrial membrane potential, inhibited excessive autophagy, reduced the expression of LC3-II and cathepsin B, and increased Bcl-2 expression. These findings suggest that necrostatin-1 exerted a protective effect against injury on dopaminergic neurons. Necrostatin-1 interacts with the apoptosis signaling pathway during this process. This pathway could be a new neuroprotective and therapeutic target in Parkinson's disease.展开更多
In this study, we investigated the effect of an antibody against E3 ubiquitin ligase seven in absentia homolog 1(SIAH-1) in PC12 cells. 1-Methyl-4-phenylpyridinium(MPP+) treatment increased α-synuclein, E1 and S...In this study, we investigated the effect of an antibody against E3 ubiquitin ligase seven in absentia homolog 1(SIAH-1) in PC12 cells. 1-Methyl-4-phenylpyridinium(MPP+) treatment increased α-synuclein, E1 and SIAH-1 protein levels in PC12 cells, and it reduced cell viability; however, there was no significant change in light chain 3 expression. Treatment with an SIAH-1 antibody decreased m RNA expression levels of α-synuclein, light chain 3 and SIAH-1, but increased E1 m RNA expression. It also increased cell viability. Combined treatment with MPP+ and rapamycin reduced SIAH-1 and α-synuclein levels. Treatment with SIAH-1 antibody alone diminished α-synuclein immunoreactivity in PC12 cells, and reduced the colocalization of α-synuclein and light chain 3. These findings suggest that the SIAH-1 antibody reduces the monoubiquitination and aggregation of α-synuclein, promoting its degradation by the ubiquitin-proteasome pathway. Consequently, SIAH-1 may be a potential new therapeutic target for Parkinson’s disease.展开更多
Background:Metastasis is the main cause of tumor-associated death and mainly responsible for treatment failure of breast cancer.Autophagy accelerates tumor metastasis.In our work,we aimed to investigate the possibilit...Background:Metastasis is the main cause of tumor-associated death and mainly responsible for treatment failure of breast cancer.Autophagy accelerates tumor metastasis.In our work,we aimed to investigate the possibility of microRNAs(miRNAs)which participate in the regulation of autophagy to inhibit tumor metastasis.Methods:MiRNA array and comprehensive analysis were performed to identify miRNAs which participated in the regulation of autophagy to inhibit tumor metastasis.The expression levels of miR-3653 in breast cancer tissues and cells were detected by quantitative real-time polymerase chain reaction.In vivo and in vitro assays were conducted to determine the function of miR-3653.The target genes of miR-3653 were detected by a dual luciferase reporter activity assay and Western blot.The relationship between miR-3653 and epithelial-mesenchymal transition(EMT)was assessed by Western blot.Student’s t-test was used to analyze the difference between any two groups,and the difference among multiple groups was analyzed with one-way analysis of variance and a Bonferroni post hoc test.Results:miR-3653 was downregulated in breast cancer cells with high metastatic ability,and high expression of miR-3653 blocked autophagic flux in breast cancer cells.Clinically,low expression of miR-3653 in breast cancer tissues(0.054±0.013 vs.0.131±0.028,t=2.475,P=0.014)was positively correlated with lymph node metastasis(0.015±0.004 vs.0.078±0.020,t=2.319,P=0.023)and poor prognosis(P<0.001).miR-3653 ameliorated the malignant phenotypes of breast cancer cells,including proliferation,migration(MDA-MB-231:0.353±0.013 vs.1.000±0.038,t=16.290,P<0.001;MDA-MB-468:0.200±0.014 vs.1.000±0.043,t=17.530,P<0.001),invasion(MDA-MB-231:0.723±0.056 vs.1.000±0.035,t=4.223,P=0.013;MDA-MB-468:0.222±0.016 vs.1.000±0.019,t=31.050,P<0.001),and colony formation(MDA-MB-231:0.472±0.022 vs.1.000±0.022,t=16.620,P<0.001;MDA-MB-468:0.650±0.040 vs.1.000±0.098,t=3.297,P=0.030).The autophagy-associated genes autophagy-related gene 12(ATG12)and activating molecule in beclin 1-regulated autophagy protein 1(AMBRA1)are target genes of miR-3653.Further studies showed that miR-3653 inhibited EMT by targeting ATG12 and AMBRA1.Conclusions:Our findings suggested that miR-3653 inhibits the autophagy process by targeting ATG12 and AMBRA1,thereby inhibiting EMT,and provided a new idea and target for the metastasis of breast cancer.展开更多
基金National Natural Science Foundation(No.82004299)Enhancement Program of Evidence-based Therapy of Digestive System Diseases(gastroesophageal reflux disease)with Traditional Chinese Medicine(No.2019XZZX-XH003)Innovation Planning Program of Postgraduate Students Education of Guangxi University of Traditional Chinese Medicine in 2020(No.YCSY2020030)。
文摘Gastroesophageal reflux disease(GERD)is a digestive system disease characterized by uncomfortable symptoms caused by reflux of gastric contents.It has increased sharply with the development of my country’s society and economy.If there is no reasonable and effective Prevention and treatment measures will inevitably increase the financial burden of patients,and also pose a major threat to the quality of life and health of patients.Cell signal transduction mediated by various receptors participates in the regulation mechanism of the body's various levels of biological functions.By inhibiting or activating its functions,the purpose of curing diseases can be achieved,and cell signal transduction has been used in traditional Chinese medicine.Studying.The theory of"adjusting the central axis"was explored by Professor Xie Sheng through decades of clinical experience.It has been proven in practice to treat GERD.It starts from the model of TCM viscera and expounds that the pathogenesis of GERD involves multiple viscera.Multi-system and multi-factor,explain the correlation of the disease with a variety of zang-fu syndromes,and use this as a basis to guide the clinical use of hidden prescriptions.The back-shu pointer therapy can prevent GERD by correcting the unbalanced state of the viscera and qi machine,and promoting the junction of the two channels of Ren and Du.Based on the theory of"adjusting the hub by the pivot",this article expounds the pathogenesis of GERD from the perspective of traditional Chinese medicine.By consulting the literature and combining with the previous research,it proposes to analyze the methods and methods of Backshu pointer therapy to prevent and treat GERD from the AMPK/ULK1 mediated autophagy pathway.
基金Supported by the National Natural Science Foundation of China,No.81600446Natural Science Foundation of Liaoning Province,China,No.201102048Natural Science Foundation of Dalian Medical Association,No.w SJ/KJC-01-JL-01
文摘AIM To evaluate whether fish oil(FO) can protect liver injury induced by intestinal ischemia/reperfusion(I/R) via the AMPK/SIRT-1/autophagy pathway.METHODS Ischemia in wistar rats was induced by superior mesenteric artery occlusion for 60 min and reperfusion for 240 min. One milliliter per day of FO emulsion or normal saline was administered by intraperitoneal injection for 5 consecutive days to each animal. Animals were sacrificed at the end of reperfusion. Blood andtissue samples were collected for analyses. AMPK, SIRT-1, and Beclin-1 expression was determined in lipopolysaccharide(LPS)-stimulated HepG2 cells with or without FO emulsion treatment.RESULTS Intestinal I/R induced significant liver morphological changes and increased serum alanine aminotransferase and aspartate aminotransferase levels. Expression of p-AMPK/AMPK, SIRT-1, and autophagy markers was decreased whereas tumor necrosis factor-α(TNF-α) and malonaldehyde(MDA) were increased. FO emulsion blocked the changes of the above indicators effectively. Besides, in LPS-stimulated HepG2 cells, small interfering RNA(siRNA) targeting AMPK impaired the FO induced increase of p-AMPK, SIRT-1, and Beclin-1 and decrease of TNF-α and MDA. SIRT-1 siRNA impaired the increase of SIRT-1 and Beclin-1 and the decrease of TNF-α and MDA.CONCLUSION Our study indicates that FO may protect the liver against intestinal I/R induced injury through the AMPK/SIRT-1/autophagy pathway.
基金supported by grants from Natural Science Foundation of Hubei Province(No.2016CFC718)Foundation of Wu Jieping Program of Funding and Cultivating the Medical Backbone of Youth and Middle-age of Wuhan City(No.320.6750.16215)Science and Research Project from Health and Family Planning Commission of Wuhan City(No.WX13Z02 and No.WX16D04)
文摘Gastric adenocarcinoma(GC) is one of the most common malignancies in the world and one of the most frequent causes of cancer-related death. Autophagy is a highly regulated catabolic pathway responsible for the degradation of long-lived proteins and damaged intracellular organelles. However, the mechanism and guiding significance of autophagy in the development and progression of GC have remained to be elucidated. This study aimed to explore the clinicopathological significances and prognostic values of autophagy-related proteins AMBRA1 and Beclin-1 in GC. Quantum dots based immunofluorescence histochemistry(QDs-IHC) was performed to observe the expression of AMBRA1 and Beclin-1 proteins in the tissue microarrays including 163 specimens of GC and 20 noncancerous gastric tissues. Simultaneously, AMBRA1 and Beclin-1 proteins were detected by Western blotting in the 10 fresh GC and corresponding normal gastric tissues. The results showed that the expression levels of both AMBRA1 and Beclin-1 proteins were higher in GC tissues than in noncancerous gastric tissues by QDs-IHC and Western blotting(P〈0.05). High AMBRA1 expression was detected in 90 of 163(55.2%) GCs and high Beclin-1 expression was detected in 83 of 163(50.9%) GCs. High AMBRA1 expression was closely related to depth of invasion, and lymph nodes metastasis(P〈0.05). High expression of Beclin-1 protein was correlated with tumor grade(P〈0.05). Positive correlation was observed between AMBRA1 and Beclin-1. Survival analysis indicated the high expression of AMBRA1 and Beclin-1 was an independent factor in predicting poor overall survival(OS) of GC patients. These findings suggest the high expression of AMBRA1 and Beclin-1 proteins is significantly correlated with GC progression. High AMBRA1 and Beclin-1 expression heralds worse outcome of GC patients, suggesting a novel candidate prognostic marker and a therapeutic target for GC.
文摘AIM: To investigate if the presence of relevant genetic polymorphisms has effect on the effectual clearance of bacteria by monocytes and granulocytes in patients with Crohn’s disease (CD).
基金supported by grants from the Science and Technology Project of Xuzhou City in China,No.XM12B017the Priority Academic Program Development of Jiangsu Higher Education Institutions in China
文摘Necroptosis is characterized by programmed necrotic cell death and autophagic activation and might be involved in the death process of dopaminergic neurons in Parkinson's disease. We hypothesized that necrostatin-1 could block necroptosis and give protection to dopaminergic neurons. There is likely to be crosstalk between necroptosis and other cell death pathways, such as apoptosis and autophagy. PC12 cells were pretreated with necroststin-1 1 hour before exposure to 6-hydroxydopamine. We examined cell viability, mitochondrial membrane potential and expression patterns of apoptotic and necroptotic death signaling proteins. The results showed that the autophagy/lysosomal pathway is involved in the 6-hydroxydopamine-induced death process of PC12 cells. Mitochondrial disability induced overactive autophagy, increased cathepsin B expression, and diminished Bcl-2 expression. Necrostatin-1 within a certain concentration range(5–30 μM) elevated the viability of PC12 cells, stabilized mitochondrial membrane potential, inhibited excessive autophagy, reduced the expression of LC3-II and cathepsin B, and increased Bcl-2 expression. These findings suggest that necrostatin-1 exerted a protective effect against injury on dopaminergic neurons. Necrostatin-1 interacts with the apoptosis signaling pathway during this process. This pathway could be a new neuroprotective and therapeutic target in Parkinson's disease.
基金supported by the China Postdoctoral Science Foundation,No.1630the Natural Science Foundation of Jiangsu Province in China,No.BK2011402+1 种基金the Jiangsu Province Postdoctoral Research Foundation in China,No.1301174Cthe Jiangsu Province Health Department Foundation in China,No.H201361
文摘In this study, we investigated the effect of an antibody against E3 ubiquitin ligase seven in absentia homolog 1(SIAH-1) in PC12 cells. 1-Methyl-4-phenylpyridinium(MPP+) treatment increased α-synuclein, E1 and SIAH-1 protein levels in PC12 cells, and it reduced cell viability; however, there was no significant change in light chain 3 expression. Treatment with an SIAH-1 antibody decreased m RNA expression levels of α-synuclein, light chain 3 and SIAH-1, but increased E1 m RNA expression. It also increased cell viability. Combined treatment with MPP+ and rapamycin reduced SIAH-1 and α-synuclein levels. Treatment with SIAH-1 antibody alone diminished α-synuclein immunoreactivity in PC12 cells, and reduced the colocalization of α-synuclein and light chain 3. These findings suggest that the SIAH-1 antibody reduces the monoubiquitination and aggregation of α-synuclein, promoting its degradation by the ubiquitin-proteasome pathway. Consequently, SIAH-1 may be a potential new therapeutic target for Parkinson’s disease.
基金National Natural Science Foundation of China(No.81872398)Chinese Academy of Medical Sciences(CAMS)Innovation Fund for Medical Sciences(CIFMS)(No.2021-I2M-1-014)
文摘Background:Metastasis is the main cause of tumor-associated death and mainly responsible for treatment failure of breast cancer.Autophagy accelerates tumor metastasis.In our work,we aimed to investigate the possibility of microRNAs(miRNAs)which participate in the regulation of autophagy to inhibit tumor metastasis.Methods:MiRNA array and comprehensive analysis were performed to identify miRNAs which participated in the regulation of autophagy to inhibit tumor metastasis.The expression levels of miR-3653 in breast cancer tissues and cells were detected by quantitative real-time polymerase chain reaction.In vivo and in vitro assays were conducted to determine the function of miR-3653.The target genes of miR-3653 were detected by a dual luciferase reporter activity assay and Western blot.The relationship between miR-3653 and epithelial-mesenchymal transition(EMT)was assessed by Western blot.Student’s t-test was used to analyze the difference between any two groups,and the difference among multiple groups was analyzed with one-way analysis of variance and a Bonferroni post hoc test.Results:miR-3653 was downregulated in breast cancer cells with high metastatic ability,and high expression of miR-3653 blocked autophagic flux in breast cancer cells.Clinically,low expression of miR-3653 in breast cancer tissues(0.054±0.013 vs.0.131±0.028,t=2.475,P=0.014)was positively correlated with lymph node metastasis(0.015±0.004 vs.0.078±0.020,t=2.319,P=0.023)and poor prognosis(P<0.001).miR-3653 ameliorated the malignant phenotypes of breast cancer cells,including proliferation,migration(MDA-MB-231:0.353±0.013 vs.1.000±0.038,t=16.290,P<0.001;MDA-MB-468:0.200±0.014 vs.1.000±0.043,t=17.530,P<0.001),invasion(MDA-MB-231:0.723±0.056 vs.1.000±0.035,t=4.223,P=0.013;MDA-MB-468:0.222±0.016 vs.1.000±0.019,t=31.050,P<0.001),and colony formation(MDA-MB-231:0.472±0.022 vs.1.000±0.022,t=16.620,P<0.001;MDA-MB-468:0.650±0.040 vs.1.000±0.098,t=3.297,P=0.030).The autophagy-associated genes autophagy-related gene 12(ATG12)and activating molecule in beclin 1-regulated autophagy protein 1(AMBRA1)are target genes of miR-3653.Further studies showed that miR-3653 inhibited EMT by targeting ATG12 and AMBRA1.Conclusions:Our findings suggested that miR-3653 inhibits the autophagy process by targeting ATG12 and AMBRA1,thereby inhibiting EMT,and provided a new idea and target for the metastasis of breast cancer.