设计了一种基于1 bit Sigma-Delta环路调制技术的高精度数字磁通门磁强计,建立了数字磁强计信号处理仿真模型,并利用Matlab的Simulink仿真工具开展了数字磁通门磁强计模型的仿真分析,对数字磁强计系统的噪声、线性度、响应速度和频率响...设计了一种基于1 bit Sigma-Delta环路调制技术的高精度数字磁通门磁强计,建立了数字磁强计信号处理仿真模型,并利用Matlab的Simulink仿真工具开展了数字磁通门磁强计模型的仿真分析,对数字磁强计系统的噪声、线性度、响应速度和频率响应进行了仿真计算。利用本文1 bit Sigma-Delta环路调制技术的数字磁强计在量程超过±10^(5 )nT的情况下,系统在1 Hz处的噪声仅为4.66 pT·Hz^(-1/2),最大线性偏差为0.16 nT,动态响应速度达到2×10^(6) nT·s^(–1),频率响应带宽超过10 Hz。仿真结果表明,基于1 bit Sigma-Delta环路调制技术的数字磁通门磁强计可以有效降低对A/D转换器精度的要求,在保证性能的前提下大幅度降低了电路复杂程度,提高了系统的可靠性,在深空探测、空间磁场测量等领域具有广泛的应用前景。展开更多
文摘设计了一种基于1 bit Sigma-Delta环路调制技术的高精度数字磁通门磁强计,建立了数字磁强计信号处理仿真模型,并利用Matlab的Simulink仿真工具开展了数字磁通门磁强计模型的仿真分析,对数字磁强计系统的噪声、线性度、响应速度和频率响应进行了仿真计算。利用本文1 bit Sigma-Delta环路调制技术的数字磁强计在量程超过±10^(5 )nT的情况下,系统在1 Hz处的噪声仅为4.66 pT·Hz^(-1/2),最大线性偏差为0.16 nT,动态响应速度达到2×10^(6) nT·s^(–1),频率响应带宽超过10 Hz。仿真结果表明,基于1 bit Sigma-Delta环路调制技术的数字磁通门磁强计可以有效降低对A/D转换器精度的要求,在保证性能的前提下大幅度降低了电路复杂程度,提高了系统的可靠性,在深空探测、空间磁场测量等领域具有广泛的应用前景。