Trichloropropane(TCP) is a chlorinated solvent which derives from chemical manufacturing as a precursor, and it is also an important constituent of solvent formulations in cleaning/degreasing operations. The control...Trichloropropane(TCP) is a chlorinated solvent which derives from chemical manufacturing as a precursor, and it is also an important constituent of solvent formulations in cleaning/degreasing operations. The control and remediation of TCP in polluted sites is a challenge for many conventional remediation techniques due to its refractory behaviour. This challenge in mind, some nano-materials and oxidants were tested to evaluate their effectiveness as in TCP degradation in a laboratory setting. Experimental results indicate that the use of nanoscale zero-valent iron prepared by green tea(GT) as a reductant has negligible degradation effect on TCP under normal temperature and pressure conditions. However, zinc powders of similar size but higher surface reactivity, demonstrated stronger dechlorination capacity in the breakdown of TCP, as almost all of TCP was degraded by carboxymethocel(CMC) stabilized nanoscale zinc within 24 h. Activated persulfate by citric acid(CA) and chelated Fe(Ⅱ) was also used for TCP treatment with a TCP removal efficiency rate of nearly 50% within a 24 h reaction period, and a molar ratio of S2O82-, Fe2+ and CA is 20:5:1. Both the reduction and oxidation reactions are in accordance with the pseudo-first order kinetic equation. These results are promising for future use of TCP for the remediation of polluted sites.展开更多
The haloalkane dehalogenase LinB from Sphingomonas paucimobills UT26 was found to transform the 1,2,3-trichloropropane(TCP) into inorganic halide ions and 2,3-dichloro-1-propanol although the catalytic activity is v...The haloalkane dehalogenase LinB from Sphingomonas paucimobills UT26 was found to transform the 1,2,3-trichloropropane(TCP) into inorganic halide ions and 2,3-dichloro-1-propanol although the catalytic activity is very low(Kcat=0.005 s^-1).In this study,molecular dynamics simulation and docking studies were performed to investigate the binding of TCP to LinB.The docking results indicate that LinB does not restrict TCP to be bound productively in the active site and the water-mediated inhibition occurs in the process of TCP interacting with LinB.The residues Ile134,Leu150,Phe154,Pro208,and Ile211 located on the cap domain are potential targets for mutagenesis researches.展开更多
基金supported by Basal Science Research Fund from the Chinese Academy of Geological Sciences(Grant No.YWF201405)
文摘Trichloropropane(TCP) is a chlorinated solvent which derives from chemical manufacturing as a precursor, and it is also an important constituent of solvent formulations in cleaning/degreasing operations. The control and remediation of TCP in polluted sites is a challenge for many conventional remediation techniques due to its refractory behaviour. This challenge in mind, some nano-materials and oxidants were tested to evaluate their effectiveness as in TCP degradation in a laboratory setting. Experimental results indicate that the use of nanoscale zero-valent iron prepared by green tea(GT) as a reductant has negligible degradation effect on TCP under normal temperature and pressure conditions. However, zinc powders of similar size but higher surface reactivity, demonstrated stronger dechlorination capacity in the breakdown of TCP, as almost all of TCP was degraded by carboxymethocel(CMC) stabilized nanoscale zinc within 24 h. Activated persulfate by citric acid(CA) and chelated Fe(Ⅱ) was also used for TCP treatment with a TCP removal efficiency rate of nearly 50% within a 24 h reaction period, and a molar ratio of S2O82-, Fe2+ and CA is 20:5:1. Both the reduction and oxidation reactions are in accordance with the pseudo-first order kinetic equation. These results are promising for future use of TCP for the remediation of polluted sites.
基金Supported by the National Natural Science Foundation of China(No.20573042)Key Projects in the National Science & Technology Pillar Program of China(No.2006BAE03B01)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20070183046)Specialized Fund for the Basic Research of Jilin University,China(No.200810018)
文摘The haloalkane dehalogenase LinB from Sphingomonas paucimobills UT26 was found to transform the 1,2,3-trichloropropane(TCP) into inorganic halide ions and 2,3-dichloro-1-propanol although the catalytic activity is very low(Kcat=0.005 s^-1).In this study,molecular dynamics simulation and docking studies were performed to investigate the binding of TCP to LinB.The docking results indicate that LinB does not restrict TCP to be bound productively in the active site and the water-mediated inhibition occurs in the process of TCP interacting with LinB.The residues Ile134,Leu150,Phe154,Pro208,and Ile211 located on the cap domain are potential targets for mutagenesis researches.