In this work, MoOx promoted Ir/SiO2 catalysts were prepared and used for the selective hydrogenolysis of tetrahydrofurfuryl alcohol (THFA) to 1,5-pentanediol in a continuous flow reactor. The effects of different no...In this work, MoOx promoted Ir/SiO2 catalysts were prepared and used for the selective hydrogenolysis of tetrahydrofurfuryl alcohol (THFA) to 1,5-pentanediol in a continuous flow reactor. The effects of different noble metals (Ir, Pt, Pd, Ru, Rh), supports and Ir contents were screened. Among the investigated catalysts, 4 wt%Ir-MoOx/SiO2 with a Mo/Ir atomic ratio of 0.13 exhibited the best catalytic performance. The synergy between Ix particles and the partially reduced isolated MoOx species attached on them is essential for the excellent catalytic performance of Ix-MoOx/SiO2. The catalyst exhibited a better hydrogenolysis efficiency of THFA with the selectivity of 1,5-pentanediol of 65%-74% at a conversion of THFA of 70%-75% when the initial THFA concentration is ranging from 20 wt% and 40 wt%. And higher system pressure was also in favor of the conversion of THFA. During a stability test, the conversion of THFA and 1,5-pentanediol yield over Ix-MoOz/SiO2 decreased with reaction time, which can be explained by the leaching of Mo species during the reaction.展开更多
An efficient environment-friendly synthesis of N-phenylpiperidine was developed from aniline and 1,5-pentanediol over γ-Al2O3 catalyst under atmospheric pressure. The conversion of 1,5-pentanediol reached 97% and the...An efficient environment-friendly synthesis of N-phenylpiperidine was developed from aniline and 1,5-pentanediol over γ-Al2O3 catalyst under atmospheric pressure. The conversion of 1,5-pentanediol reached 97% and the selectivity for N-phenylpiperidine attained 94%. The structure of the catalyst was characterized by NH3-TPD and BET. The influences of calcination temperature of the catalyst and reaction temperature on activity and selectivity of the catalyst were investigated.展开更多
基金supported by the National Natural Science Foundation of China(No.21106143,No.21277140)100-Talent Project of Dalian Institute of Chemical Physics(DICP)+1 种基金the Independent Innovation Foundation of State Key Laboratory of Catalysis(No.R201113)the Zhejiang Provincial Natural Science Foundation of China(LR12E02001)
文摘In this work, MoOx promoted Ir/SiO2 catalysts were prepared and used for the selective hydrogenolysis of tetrahydrofurfuryl alcohol (THFA) to 1,5-pentanediol in a continuous flow reactor. The effects of different noble metals (Ir, Pt, Pd, Ru, Rh), supports and Ir contents were screened. Among the investigated catalysts, 4 wt%Ir-MoOx/SiO2 with a Mo/Ir atomic ratio of 0.13 exhibited the best catalytic performance. The synergy between Ix particles and the partially reduced isolated MoOx species attached on them is essential for the excellent catalytic performance of Ix-MoOx/SiO2. The catalyst exhibited a better hydrogenolysis efficiency of THFA with the selectivity of 1,5-pentanediol of 65%-74% at a conversion of THFA of 70%-75% when the initial THFA concentration is ranging from 20 wt% and 40 wt%. And higher system pressure was also in favor of the conversion of THFA. During a stability test, the conversion of THFA and 1,5-pentanediol yield over Ix-MoOz/SiO2 decreased with reaction time, which can be explained by the leaching of Mo species during the reaction.
基金supported by the Natural Science Foundation of Liaoning Province(No.20072154)
文摘An efficient environment-friendly synthesis of N-phenylpiperidine was developed from aniline and 1,5-pentanediol over γ-Al2O3 catalyst under atmospheric pressure. The conversion of 1,5-pentanediol reached 97% and the selectivity for N-phenylpiperidine attained 94%. The structure of the catalyst was characterized by NH3-TPD and BET. The influences of calcination temperature of the catalyst and reaction temperature on activity and selectivity of the catalyst were investigated.