Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collect...Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital.The expression of MUC1 was measured by real-time quantitative PCR(qPCR)in the patients with PNC.The 5-8F and HNE1 cells were transfected with siRNA control(si-control)or siRNA targeting MUC1(si-MUC1).Cell proliferation was analyzed by cell counting kit-8 and colony formation assay,and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells.The qPCR and ELISA were executed to analyze the levels of TNF-αand IL-6.Western blot was performed to measure the expression of MUC1,NFкB and apoptosis-related proteins(Bax and Bcl-2).Results The expression of MUC1 was up-regulated in the NPC tissues,and NPC patients with the high MUC1 expression were inclined to EBV infection,growth and metastasis of NPC.Loss of MUC1 restrained malignant features,including the proliferation and apoptosis,downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells.Conclusion Downregulation of MUC1 restrained biological characteristics of malignancy,including cell proliferation and apoptosis,by inactivating NF-κB signaling pathway in NPC.展开更多
A major problem which is poorly understood in the management of bladder cancer is low sensitivity to chemotherapy and high recurrence after transurethral resection. Insulin-like growth factor 1 receptor (IGF-1R) signa...A major problem which is poorly understood in the management of bladder cancer is low sensitivity to chemotherapy and high recurrence after transurethral resection. Insulin-like growth factor 1 receptor (IGF-1R) signaling plays a very important role in progression, invasion and metastasis of bladder cancer cells. In this study, we investigated whether IGF-1R was involved in the growth stimulating activity and drug resistance of bladder cancer cells. The results showed: The mRNAs of IGF-1, IGF-2 and IGF-1R were strongly expressed in serum-free cultured T24 cell line, whereas normal urothelial cells did not express these factors/receptors or only in trace levels; T24 cell responded far better to growth stimulation by IGF-1 than did normal urothelial cells; blockage of IGF1R by antisense oligodeoxynucleotide (ODN) significantly inhibited the growth of T24 cell and enhanced sensitivity and apoptosis of T24 cells to mitomycin (MMC). These results suggested that blockage of IGF-IR signaling might potentially contribute to the treatment of bladder cancer cells which are insensitive to chemotherapy.展开更多
AIM: To study the expression and phosphorylation of extracellular signal-regulated kinase (ERK) i and ERK2 in multidrug resistant (MDR) hepatocellular carcinoma (HCC) cells.METHODS: MDR HCC cell lines, HepG2/a...AIM: To study the expression and phosphorylation of extracellular signal-regulated kinase (ERK) i and ERK2 in multidrug resistant (MDR) hepatocellular carcinoma (HCC) cells.METHODS: MDR HCC cell lines, HepG2/adriamycin (ADM) and SMMC7721/ADM, were developed by exposing parental cells to stepwise increasing concentrations of ADM. MTT assay was used to determine drug sensitivity. Flow cytometry was employed to analyze cell cycle distribution and measure cell P-glycoprotein (P-gp) and multidrug resistant protein 1 (MRP1) expression levels. ERK1 and ERK2 mRNA expression lev-ls were measured by quantitative real-time PCR (QRTPCR). Expression and phosphorylation of ERK1 and ERK2 were analyzed by Western blot.RESULTS: MTT assay showed that HepG2/ADM andSMMC7721/ADM were resistant not only to ADM, but also to multiple anticancer drugs. The P-gp expression was over 10-fold higher in HepG2/ADM cells than in HepG2 cells (8.92% ±0.22% vs 0.88% ± 0.05%, P 〈 0.001) and over 4-fold higher in SMMC7721/ADM cells than in SMMC7721 cells (7.37% ± 0.26% vs 1.74% ± 0.25%, P 〈 0.001). However, the MRP1 expression was not significantly higher in HepG2/ADM and SMMC7721/ADM cells than in parental cells. In addition, the percentage of MDR HepG2/ADM and SMMC7721/ADM cells was significantly decreased in the G0/G1 phase and increased in the the S phase or G2/M phase. QRT-PCR analysis demonstrated that the ERK1 and ERK2 mRNA expression increased apparently in HepG2/ADM cells and decreased significantly in SMMC7721/ADM cells. Compared with the expression of parental cells, ERK1 and ERK2 protein expressions were markedly decreased in SMMC7721/ADM cells. However, ERK2 protein expression was markedly increased while ERK1 protein expression had no significant change in HepG2/ADM cells. Phosphorylation of ERK1 and ERK2 was markedly decreased in both HepG2/ADM and SMMC7721/ADM MDR cells.CONCLUSION: ERK1 and ERK2 activities are downregulated in P-gp-mediated MDR HCC cells. ERK1 or ERK2 might be a potential drug target for circumventing MDR HCC cells,展开更多
Background The induced pluripotent stem cell (iPSC) has shown great potential in cellular therapy of myocardial infarction (MI), while its application is hampered by the low efficiency of cardiomyocyte differentia...Background The induced pluripotent stem cell (iPSC) has shown great potential in cellular therapy of myocardial infarction (MI), while its application is hampered by the low efficiency of cardiomyocyte differentiation. The present study was designed to investigate the effects of cardiotrophin-1 (CT-1) on cardiomyocyte differentiation from mouse induced pluripotent stem cells (miPSCs) and the underlying mechanisms involved. Methods The optimal treatment condition for cardiomyocyte differentiation from miPSCs was established with ideal concentration (10 ng/mL) and duration (from day 3 to day 14) of CT-1 administration. Up-regulated expression of cardiac specific genes that accounted for embryonic cardiogenesis was observed by quantitative RT-PCR. Elevated amount of a-myosin heavy chain (ct-MHC) and cardiac troponin I (cTn I) positive cells were detected by immunofluorescence staining and flow cytometry analysis in CT- 1 group. Results Transmission electron microscopic analysis revealed that cells treated with CT- 1 showed better organized sacromeric structure and more mitochondria, which are morphological characteristic of matured cardiomyocytes. Western blot demonstrated that CT-1 promotes cardiomyocyte differentiation from miPSCs partly via JAK2/STAT3/Pim-1 pathway as compared with control group. Conclusions These findings suggested that CT-1 could enhance the cardiomyocyte differentiation as well as the maturation of mouse induced pluripotent stem cell derived cardiomyocytes by regulating JAK2/STAT3/Pim-1 signaling pathway.展开更多
Oxidative stress is a major factor affecting animal health and production performance. This paper briefly introduced the signaling pathways(i.e. NF-κB signaling pathway, MAPK, AP-1 and PGC-1α) of oxidative stress an...Oxidative stress is a major factor affecting animal health and production performance. This paper briefly introduced the signaling pathways(i.e. NF-κB signaling pathway, MAPK, AP-1 and PGC-1α) of oxidative stress and the main genes regulating the signals of oxidative stress in skeletal muscle, providing a theoretical basis for reducing oxidative stress damage.展开更多
Insulin-like growth factor-1 receptor(IGF-1 R)is involved in both glucose and bone metabolism.IGF-1 R signaling regulates the canonical Wnt/β-catenin signaling pathway.In this study,we investigated whether the IGF-1...Insulin-like growth factor-1 receptor(IGF-1 R)is involved in both glucose and bone metabolism.IGF-1 R signaling regulates the canonical Wnt/β-catenin signaling pathway.In this study,we investigated whether the IGF-1 R/β-catenin signaling axis plays a role in the pathogenesis of diabetic osteoporosis(DOP).Serum from patients with or without DOP was collected to measure the IGF-1 R level using enzyme-linked immunosorbent assay(ELISA).Rats were given streptozotocin following a four-week high-fat diet induction(DOP group),or received vehicle after the same period of a normal diet(control group).Dual energy X-ray absorption,a biomechanics test,and hematoxylin-eosin(HE)staining were performed to evaluate bone mass,bone strength,and histomorphology,respectively,in vertebrae.Quantitative real-time polymerase chain reaction(qRT-PCR)and western blotting were performed to measure the total and phosphorylation levels of IGF-1 R,glycogen synthase kinase-3β(GSK-3β),andβ-catenin.The serum IGF-1 R level was much higher in patients with DOP than in controls.DOP rats exhibited strikingly reduced bone mass and attenuated compression strength of the vertebrae compared with the control group.HE staining showed that the histomorphology of DOP vertebrae was seriously impaired,which manifested as decreased and thinned trabeculae and increased lipid droplets within trabeculae.PCR analysis demonstrated that IGF-1 R mRNA expression was significantly up-regulated,and western blotting detection showed that phosphorylation levels of IGF-1 R,GSK-3β,andβ-catenin were enhanced in DOP rat vertebrae.Our results suggest that the IGF-1 R/β-catenin signaling axis plays a role in the pathogenesis of DOP.This may contribute to development of the underlying therapeutic target for DOP.展开更多
Objective: Mitogen-activated protein kinases (MAPKs) are correlated with a more malignant phenotype in many cancers. This study was designed to evaluate the predictive value of the expression of MAPK phosphatase-1 ...Objective: Mitogen-activated protein kinases (MAPKs) are correlated with a more malignant phenotype in many cancers. This study was designed to evaluate the predictive value of the expression of MAPK phosphatase-1 (MKP-1) and phosphorylated extracellular signal-regulated kinase 1/2 (p-ERKl/2), as the key regulatory mechanism of the MAPKs, in lung squamous cell carcinoma (SCC). Methods: We assessed the expressions of MKP-1 and p-ERK1/2 in twenty subjects at different differentiation degree of SCC and five normal lungs by immunohistochemistry and real-time reverse transcriptase polymerase chain reaction (RT-PCR) analysis. Results: Immunohistochemistry and real-time RT-PCR assay showed that the expression of MKP-1 was gradually decreased as tissue type went from normal lung tissues to increasingly undifferentiated carcinoma, and it was negatively correlated with tumor differentiation (P〈0.01). However, the expression of p-ERK1/2 or ERKl/2 was gradually increased as tissue type went from normal lung tissues to increasingly undifferentiated carcinoma, and it was positively correlated with tumor differentiation (P〈0.01). Conclusions: Our data indicates the relevance of MKP-1 and p-ERK1/2 in SCC as a potential positive and negative prognostic factor. The imbalanced expression of MKP-1 and p-ERKl/2 may play a role in the development of SCC and these two molecules may be new targets for the therapy and prognosis of SCC.展开更多
Sphingosine-1-phosphate(S1P) is a potent pleotropic bioactive lipid mediator involved in immune cell trafficking, cell survival,cell proliferation, cell migration, angiogenesis and many other cellular processes. S1 P ...Sphingosine-1-phosphate(S1P) is a potent pleotropic bioactive lipid mediator involved in immune cell trafficking, cell survival,cell proliferation, cell migration, angiogenesis and many other cellular processes. S1 P either activates S1 P receptors(S1PR1-5) through "inside-out signaling" or acts directly on intracellular targets to regulate various cellular processes. In the past two decades, much progress has been made in exploring S1 P signaling and its pathogenic roles in diseases as well as in developing modulators of S1 P signaling, including S1 P agonists, S1 P antagonists and sphingosine kinase(SphK) inhibitors.Ceramide and S1 P have been defined as reciprocal regulators of cell fate, and S1 P signaling has been shown to be crucial for the pathogenesis of various diseases, including autoimmune diseases, inflammation and cancer; therefore, targeting S1 P signaling may curtail the process of pathogenesis and serve as a potential therapeutic target for the treatment of these diseases. In this review, we describe recent advances in our understanding of S1 P signaling in cancer development(particularly in inflammationassociated cancer) as well as in innate and adaptive immunity, and we also discuss modulators of S1 P signaling in cancer treatment.展开更多
Caenorhabditis elegans (C. elegans) was used as an animal model to study the effect of (-)-5-hydroxy-equol, a microbialmetabolite of isoflavone genistein, on the lifespan, fecundity and resistance against thermal ...Caenorhabditis elegans (C. elegans) was used as an animal model to study the effect of (-)-5-hydroxy-equol, a microbialmetabolite of isoflavone genistein, on the lifespan, fecundity and resistance against thermal and oxidative stress. The resultsshowed that (-)-5-hydroxy-equol not only significantly increased the lifespan of C. elegans but also significantly enhancedthe resistance against thermal and oxidative stress at the concentrations of 0.1 mmol/L and 0.2 mmol/L. However, the fecundityof C. elegans was not obviously influenced after being exposed to the same concentrations of (-)-5-hydroxy-equol. Further studieson comparative transcriptome analyses and the lifespan ofdaf-16 (mu86) mutant and daf-2 (e1370) mutant indicated that(-)-5-hydroxy-equol prolonged the lifespan of C. elegans through DAF-2/DAF-16 Insulin/IGF-1 signaling pathway. This isthe first report that (-)-5-hydroxy-equol was able to increase the lifespan and improve the thermal and oxidative stress toleranceof C. elegans.展开更多
文摘Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital.The expression of MUC1 was measured by real-time quantitative PCR(qPCR)in the patients with PNC.The 5-8F and HNE1 cells were transfected with siRNA control(si-control)or siRNA targeting MUC1(si-MUC1).Cell proliferation was analyzed by cell counting kit-8 and colony formation assay,and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells.The qPCR and ELISA were executed to analyze the levels of TNF-αand IL-6.Western blot was performed to measure the expression of MUC1,NFкB and apoptosis-related proteins(Bax and Bcl-2).Results The expression of MUC1 was up-regulated in the NPC tissues,and NPC patients with the high MUC1 expression were inclined to EBV infection,growth and metastasis of NPC.Loss of MUC1 restrained malignant features,including the proliferation and apoptosis,downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells.Conclusion Downregulation of MUC1 restrained biological characteristics of malignancy,including cell proliferation and apoptosis,by inactivating NF-κB signaling pathway in NPC.
文摘A major problem which is poorly understood in the management of bladder cancer is low sensitivity to chemotherapy and high recurrence after transurethral resection. Insulin-like growth factor 1 receptor (IGF-1R) signaling plays a very important role in progression, invasion and metastasis of bladder cancer cells. In this study, we investigated whether IGF-1R was involved in the growth stimulating activity and drug resistance of bladder cancer cells. The results showed: The mRNAs of IGF-1, IGF-2 and IGF-1R were strongly expressed in serum-free cultured T24 cell line, whereas normal urothelial cells did not express these factors/receptors or only in trace levels; T24 cell responded far better to growth stimulation by IGF-1 than did normal urothelial cells; blockage of IGF1R by antisense oligodeoxynucleotide (ODN) significantly inhibited the growth of T24 cell and enhanced sensitivity and apoptosis of T24 cells to mitomycin (MMC). These results suggested that blockage of IGF-IR signaling might potentially contribute to the treatment of bladder cancer cells which are insensitive to chemotherapy.
基金Supported by Innovation Fund of Fujian Province,No.2007-CXB-7Key Science and Technology Project of Xiamen,No.3502Z20077045
文摘AIM: To study the expression and phosphorylation of extracellular signal-regulated kinase (ERK) i and ERK2 in multidrug resistant (MDR) hepatocellular carcinoma (HCC) cells.METHODS: MDR HCC cell lines, HepG2/adriamycin (ADM) and SMMC7721/ADM, were developed by exposing parental cells to stepwise increasing concentrations of ADM. MTT assay was used to determine drug sensitivity. Flow cytometry was employed to analyze cell cycle distribution and measure cell P-glycoprotein (P-gp) and multidrug resistant protein 1 (MRP1) expression levels. ERK1 and ERK2 mRNA expression lev-ls were measured by quantitative real-time PCR (QRTPCR). Expression and phosphorylation of ERK1 and ERK2 were analyzed by Western blot.RESULTS: MTT assay showed that HepG2/ADM andSMMC7721/ADM were resistant not only to ADM, but also to multiple anticancer drugs. The P-gp expression was over 10-fold higher in HepG2/ADM cells than in HepG2 cells (8.92% ±0.22% vs 0.88% ± 0.05%, P 〈 0.001) and over 4-fold higher in SMMC7721/ADM cells than in SMMC7721 cells (7.37% ± 0.26% vs 1.74% ± 0.25%, P 〈 0.001). However, the MRP1 expression was not significantly higher in HepG2/ADM and SMMC7721/ADM cells than in parental cells. In addition, the percentage of MDR HepG2/ADM and SMMC7721/ADM cells was significantly decreased in the G0/G1 phase and increased in the the S phase or G2/M phase. QRT-PCR analysis demonstrated that the ERK1 and ERK2 mRNA expression increased apparently in HepG2/ADM cells and decreased significantly in SMMC7721/ADM cells. Compared with the expression of parental cells, ERK1 and ERK2 protein expressions were markedly decreased in SMMC7721/ADM cells. However, ERK2 protein expression was markedly increased while ERK1 protein expression had no significant change in HepG2/ADM cells. Phosphorylation of ERK1 and ERK2 was markedly decreased in both HepG2/ADM and SMMC7721/ADM MDR cells.CONCLUSION: ERK1 and ERK2 activities are downregulated in P-gp-mediated MDR HCC cells. ERK1 or ERK2 might be a potential drug target for circumventing MDR HCC cells,
基金This work was supported by the National Funds for Distinguished Young Scientists of China (No. 81325009) and National Nature Science Foundation of China (No. 81270168, No. 81227901), (Feng Cao BWS12J037), Innovation Team granted by Ministry of Education PRC (IRT1053), National Basic Research Program of China (2012CB518101). Shaanxi Province Program (2013K12-02-03, 2014KCT-20). The authors declare no conflict of interest.
文摘Background The induced pluripotent stem cell (iPSC) has shown great potential in cellular therapy of myocardial infarction (MI), while its application is hampered by the low efficiency of cardiomyocyte differentiation. The present study was designed to investigate the effects of cardiotrophin-1 (CT-1) on cardiomyocyte differentiation from mouse induced pluripotent stem cells (miPSCs) and the underlying mechanisms involved. Methods The optimal treatment condition for cardiomyocyte differentiation from miPSCs was established with ideal concentration (10 ng/mL) and duration (from day 3 to day 14) of CT-1 administration. Up-regulated expression of cardiac specific genes that accounted for embryonic cardiogenesis was observed by quantitative RT-PCR. Elevated amount of a-myosin heavy chain (ct-MHC) and cardiac troponin I (cTn I) positive cells were detected by immunofluorescence staining and flow cytometry analysis in CT- 1 group. Results Transmission electron microscopic analysis revealed that cells treated with CT- 1 showed better organized sacromeric structure and more mitochondria, which are morphological characteristic of matured cardiomyocytes. Western blot demonstrated that CT-1 promotes cardiomyocyte differentiation from miPSCs partly via JAK2/STAT3/Pim-1 pathway as compared with control group. Conclusions These findings suggested that CT-1 could enhance the cardiomyocyte differentiation as well as the maturation of mouse induced pluripotent stem cell derived cardiomyocytes by regulating JAK2/STAT3/Pim-1 signaling pathway.
基金Supported by Key Project of Natural Science Foundation of Hubei Province(2013CFA100)National Natural Science Foundation of China(31472117)
文摘Oxidative stress is a major factor affecting animal health and production performance. This paper briefly introduced the signaling pathways(i.e. NF-κB signaling pathway, MAPK, AP-1 and PGC-1α) of oxidative stress and the main genes regulating the signals of oxidative stress in skeletal muscle, providing a theoretical basis for reducing oxidative stress damage.
基金Project supported by the National Natural Science Foundation of China(Nos.81774338 and 81674000)the Natural Science Foundation of Guangdong Province(No.2016A030313645)+1 种基金the Science and Technology Projects of Guangdong Province(No.2016A020226006)the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2018),China
文摘Insulin-like growth factor-1 receptor(IGF-1 R)is involved in both glucose and bone metabolism.IGF-1 R signaling regulates the canonical Wnt/β-catenin signaling pathway.In this study,we investigated whether the IGF-1 R/β-catenin signaling axis plays a role in the pathogenesis of diabetic osteoporosis(DOP).Serum from patients with or without DOP was collected to measure the IGF-1 R level using enzyme-linked immunosorbent assay(ELISA).Rats were given streptozotocin following a four-week high-fat diet induction(DOP group),or received vehicle after the same period of a normal diet(control group).Dual energy X-ray absorption,a biomechanics test,and hematoxylin-eosin(HE)staining were performed to evaluate bone mass,bone strength,and histomorphology,respectively,in vertebrae.Quantitative real-time polymerase chain reaction(qRT-PCR)and western blotting were performed to measure the total and phosphorylation levels of IGF-1 R,glycogen synthase kinase-3β(GSK-3β),andβ-catenin.The serum IGF-1 R level was much higher in patients with DOP than in controls.DOP rats exhibited strikingly reduced bone mass and attenuated compression strength of the vertebrae compared with the control group.HE staining showed that the histomorphology of DOP vertebrae was seriously impaired,which manifested as decreased and thinned trabeculae and increased lipid droplets within trabeculae.PCR analysis demonstrated that IGF-1 R mRNA expression was significantly up-regulated,and western blotting detection showed that phosphorylation levels of IGF-1 R,GSK-3β,andβ-catenin were enhanced in DOP rat vertebrae.Our results suggest that the IGF-1 R/β-catenin signaling axis plays a role in the pathogenesis of DOP.This may contribute to development of the underlying therapeutic target for DOP.
基金supported by the National Natural Science Foundation of China (No. 30900654)the Science and Technology Department of Zhejiang Province (No. 2009R10031)the Health Bureau of Zhejiang Province (No. 2009QN010), China
文摘Objective: Mitogen-activated protein kinases (MAPKs) are correlated with a more malignant phenotype in many cancers. This study was designed to evaluate the predictive value of the expression of MAPK phosphatase-1 (MKP-1) and phosphorylated extracellular signal-regulated kinase 1/2 (p-ERKl/2), as the key regulatory mechanism of the MAPKs, in lung squamous cell carcinoma (SCC). Methods: We assessed the expressions of MKP-1 and p-ERK1/2 in twenty subjects at different differentiation degree of SCC and five normal lungs by immunohistochemistry and real-time reverse transcriptase polymerase chain reaction (RT-PCR) analysis. Results: Immunohistochemistry and real-time RT-PCR assay showed that the expression of MKP-1 was gradually decreased as tissue type went from normal lung tissues to increasingly undifferentiated carcinoma, and it was negatively correlated with tumor differentiation (P〈0.01). However, the expression of p-ERK1/2 or ERKl/2 was gradually increased as tissue type went from normal lung tissues to increasingly undifferentiated carcinoma, and it was positively correlated with tumor differentiation (P〈0.01). Conclusions: Our data indicates the relevance of MKP-1 and p-ERK1/2 in SCC as a potential positive and negative prognostic factor. The imbalanced expression of MKP-1 and p-ERKl/2 may play a role in the development of SCC and these two molecules may be new targets for the therapy and prognosis of SCC.
基金financial support from the National Natural Science Foundation of China(91229204)the Major Project of the Chinese National Programs for Fundamental Research and Development(2015CB910304)
文摘Sphingosine-1-phosphate(S1P) is a potent pleotropic bioactive lipid mediator involved in immune cell trafficking, cell survival,cell proliferation, cell migration, angiogenesis and many other cellular processes. S1 P either activates S1 P receptors(S1PR1-5) through "inside-out signaling" or acts directly on intracellular targets to regulate various cellular processes. In the past two decades, much progress has been made in exploring S1 P signaling and its pathogenic roles in diseases as well as in developing modulators of S1 P signaling, including S1 P agonists, S1 P antagonists and sphingosine kinase(SphK) inhibitors.Ceramide and S1 P have been defined as reciprocal regulators of cell fate, and S1 P signaling has been shown to be crucial for the pathogenesis of various diseases, including autoimmune diseases, inflammation and cancer; therefore, targeting S1 P signaling may curtail the process of pathogenesis and serve as a potential therapeutic target for the treatment of these diseases. In this review, we describe recent advances in our understanding of S1 P signaling in cancer development(particularly in inflammationassociated cancer) as well as in innate and adaptive immunity, and we also discuss modulators of S1 P signaling in cancer treatment.
基金National Natural Science Foundation of China(Grant No.31170058)the Service Center for Experts and Scholars of Hebei Province(Grant No.CPRC027)
文摘Caenorhabditis elegans (C. elegans) was used as an animal model to study the effect of (-)-5-hydroxy-equol, a microbialmetabolite of isoflavone genistein, on the lifespan, fecundity and resistance against thermal and oxidative stress. The resultsshowed that (-)-5-hydroxy-equol not only significantly increased the lifespan of C. elegans but also significantly enhancedthe resistance against thermal and oxidative stress at the concentrations of 0.1 mmol/L and 0.2 mmol/L. However, the fecundityof C. elegans was not obviously influenced after being exposed to the same concentrations of (-)-5-hydroxy-equol. Further studieson comparative transcriptome analyses and the lifespan ofdaf-16 (mu86) mutant and daf-2 (e1370) mutant indicated that(-)-5-hydroxy-equol prolonged the lifespan of C. elegans through DAF-2/DAF-16 Insulin/IGF-1 signaling pathway. This isthe first report that (-)-5-hydroxy-equol was able to increase the lifespan and improve the thermal and oxidative stress toleranceof C. elegans.