本文研究了2-丙醇和1,1,1-三氟-2-丙醇在Ni(100)表面解离的可能微观反应机理,使用完全线性同步和二次同步变换(complete LST/QST)方法确定解离反应的过渡态.采用基于第一性原理的密度泛函理论与周期平板模型相结合的方法,优化了2-丙醇和...本文研究了2-丙醇和1,1,1-三氟-2-丙醇在Ni(100)表面解离的可能微观反应机理,使用完全线性同步和二次同步变换(complete LST/QST)方法确定解离反应的过渡态.采用基于第一性原理的密度泛函理论与周期平板模型相结合的方法,优化了2-丙醇和1,1,1-三氟-2-丙醇裂解反应过程各物种在Ni(100)表面的top,hollow和bridge位的吸附模型,计算了能量,并对布局电荷进行了分析,得到了各物种的有利吸附位.结果表明:2-丙醇和1,1,1-三氟-2-丙醇在Ni(100)表面都存在β-H和γ-H两个平行竞争的解离过程,其中2-丙醇在Ni(100)表面β-H解离的速控步骤活化能为64.7 k J·mol-1猯,而γ-H解离速控步骤活化能为233.1 k J·mol-1猯,故β-H解离过程占优势,主要产物是CH3COCH3;相反,1,1,1-三氟-2-丙醇在Ni(100)表面β-H解离的速控步骤活化能为257.1 k J·mol-1猯,而γ-H解离速控步骤活化能为148.1 k J·mol-1猯,故γ-H解离过程占优势,主要产物是CF3CH=CH2.由此说明,电负性更大的氟原子取代2-丙醇中的氢原子之后,2-丙醇在Ni表面的解离机理发生了改变.理论预测结果与实验结论一致.展开更多
The title compound was synthesized from 2,4 difluoro α (1 H 1,2,4 triazol 1 yl) acetophenone by phase transfer catalytic reaction with trimethyl sulfoxonium iodide. Total yield of this improved method was 42%.
文摘本文研究了2-丙醇和1,1,1-三氟-2-丙醇在Ni(100)表面解离的可能微观反应机理,使用完全线性同步和二次同步变换(complete LST/QST)方法确定解离反应的过渡态.采用基于第一性原理的密度泛函理论与周期平板模型相结合的方法,优化了2-丙醇和1,1,1-三氟-2-丙醇裂解反应过程各物种在Ni(100)表面的top,hollow和bridge位的吸附模型,计算了能量,并对布局电荷进行了分析,得到了各物种的有利吸附位.结果表明:2-丙醇和1,1,1-三氟-2-丙醇在Ni(100)表面都存在β-H和γ-H两个平行竞争的解离过程,其中2-丙醇在Ni(100)表面β-H解离的速控步骤活化能为64.7 k J·mol-1猯,而γ-H解离速控步骤活化能为233.1 k J·mol-1猯,故β-H解离过程占优势,主要产物是CH3COCH3;相反,1,1,1-三氟-2-丙醇在Ni(100)表面β-H解离的速控步骤活化能为257.1 k J·mol-1猯,而γ-H解离速控步骤活化能为148.1 k J·mol-1猯,故γ-H解离过程占优势,主要产物是CF3CH=CH2.由此说明,电负性更大的氟原子取代2-丙醇中的氢原子之后,2-丙醇在Ni表面的解离机理发生了改变.理论预测结果与实验结论一致.
文摘The title compound was synthesized from 2,4 difluoro α (1 H 1,2,4 triazol 1 yl) acetophenone by phase transfer catalytic reaction with trimethyl sulfoxonium iodide. Total yield of this improved method was 42%.