To evaluate the relationship between salinity tolerance and genetic diversity of plankton,we collected a wild species of plankton from Taipingjiao,Qingdao.The fragment of ITS1-5.8S rDNA-ITS2 was extracted and sequence...To evaluate the relationship between salinity tolerance and genetic diversity of plankton,we collected a wild species of plankton from Taipingjiao,Qingdao.The fragment of ITS1-5.8S rDNA-ITS2 was extracted and sequenced.The results showed that the plankton belongs to Oxyrrhis marina.The salinity tolerance of O.marina ranges from 4 to 60.Seven selected groups were built up to evaluate salinity tolerance and to assess genetic diversity by RAPD.The salinity tolerance comparison revealed considerable differences among groups:the strains of O.marina in group 4 could survive under salinity from 4 to 32,while the strains selected for salinity 60 died under the salinity lower than 16.Analysis of genetic diversity of the seven groups showed that the mean genetic diversity index value was 0.28,but it was only 0.16 in selected group of 4 and was 0.24 for group 60.The result of AMOVA suggested a significantly positive relationship between the salinity tolerance and genetic diversity of O.marina (P<0.01).This study indicates that consideration of intraspecific genetic divergence in O.marina might be indispensable when using it as a model in the study of salinity tolerance of wild plankton.展开更多
文摘To evaluate the relationship between salinity tolerance and genetic diversity of plankton,we collected a wild species of plankton from Taipingjiao,Qingdao.The fragment of ITS1-5.8S rDNA-ITS2 was extracted and sequenced.The results showed that the plankton belongs to Oxyrrhis marina.The salinity tolerance of O.marina ranges from 4 to 60.Seven selected groups were built up to evaluate salinity tolerance and to assess genetic diversity by RAPD.The salinity tolerance comparison revealed considerable differences among groups:the strains of O.marina in group 4 could survive under salinity from 4 to 32,while the strains selected for salinity 60 died under the salinity lower than 16.Analysis of genetic diversity of the seven groups showed that the mean genetic diversity index value was 0.28,but it was only 0.16 in selected group of 4 and was 0.24 for group 60.The result of AMOVA suggested a significantly positive relationship between the salinity tolerance and genetic diversity of O.marina (P<0.01).This study indicates that consideration of intraspecific genetic divergence in O.marina might be indispensable when using it as a model in the study of salinity tolerance of wild plankton.