The anodic behavior of neodymium in acidic AlCl3-1-ethyl-3-methyl-imidazolium chloride (AIC13-EMIC) ionic liquid was investigated by conducting linear sweep voltammeter and chonopotentiometry. The viscosity of Nd di...The anodic behavior of neodymium in acidic AlCl3-1-ethyl-3-methyl-imidazolium chloride (AIC13-EMIC) ionic liquid was investigated by conducting linear sweep voltammeter and chonopotentiometry. The viscosity of Nd dissolved ionic liquid and the surface morphologies of Nd were characterized using an Ostwald viscometer and a scanning electron microscope, respectively. The chemical composition of Nd surface was indentified by Raman spectra. The results showed that dissolution of Nd under anodic polarization occurred after the breakdown of oxide films. A viscous layer formed at the interface of Nd/ionic liquid during the galvanostatic process of 5 and 20 mA/cm^2. The formation of viscous layer was attributed to the accumulation of Nd dissolved AlCl3-EMIC ionic liquid, which had high viscosity. The oxide films could be removed thoroughly and the surface of Nd was homogeneous without etching pits, when viscous layer formed in the anodic process. Otherwise, the surface showed a pitting morphology.展开更多
Leather is a collagen-based biomass prepared from raw skins or hides by a series of unit operations, in which the unhairing and fiber opening are extremely important operations. However, the conventional Na2S/Ca(OH)2 ...Leather is a collagen-based biomass prepared from raw skins or hides by a series of unit operations, in which the unhairing and fiber opening are extremely important operations. However, the conventional Na2S/Ca(OH)2 system used in unhairing and fiber opening has given rise to the pollution to the environment. It is necessary to develop substitute technology for the Na2S/Ca(OH)2. In the present study, 1-allyl-3-methylimidazolium chloride ([AMIm]Cl) was used to cooperate with dispase for cycle unhairing and one-pot beamhouse to recycle waste bovine hides and com-pared with conventional processing. During those processes, the mechanism of [AMIm]Cl-dispase synergistic unhair-ing and collagen fibers opening were studied. Besides, plant hazard, organic matter and [AMIm]Cl of wastewater from [AMIm]Cl-dispase process were respectively investigated and separated to evaluate the environmental and economic benefits of the [AMIm]Cl-dispase process. As a result, enzyme activity after unhairing by [AMIm]Cl-diapase system for using 5 times is higher than that by KCl-dispase system, and needs lower unhairing time, which is because of rapid penetration of [AMIm]Cl-dispase solution in bovine hides. For this reason, the tensile strength and elastic modulus of tanned leather from [AMIm]Cl-dispase process are higher than those from the KCl-diapase and conventional pro-cesses, and its hydrothermal shrinkage temperature is comparable to that of the conventional one. Because of the 58.13% lower wastewater discharge (WD), 66.60% lower total solids (TS), 97.23% lower ammonia nitrogen (NH3-N), non-toxic wastewater and organic matter recovery in wastewater are reached from [AMIm]Cl-dispase process, which is expected to be an alternative to the conventional process to reduce environmental pollution and realize the sustainable development of technology for leather manufacturing.展开更多
The pretreatment of rice straw is often used to enhance the hydrolysis. 1-allyl-3-methylimidazolium chloride ( [ AMIM ] C1) is a kind of low viscous, nontoxic and recyclable ionic liquid. It was used to treat rice s...The pretreatment of rice straw is often used to enhance the hydrolysis. 1-allyl-3-methylimidazolium chloride ( [ AMIM ] C1) is a kind of low viscous, nontoxic and recyclable ionic liquid. It was used to treat rice straw and improve the enzymatic hydrolysis of rice straw in this study. The factors influencing the pretreatment were as follows: the dosage of rice straw in [ AMIM ] Cl, crush mesh of rice straw, pretreatment temperature and time. After the pretreatment with a 3 % (the weight ratio of rice straw to ionic liquid) rice straw dosage in [AMIM]Cl at 110 ℃ for 1 h, the yield of reducing sugar of regenerated rice straw by 33 U/mL cellulase hydrolysis was 53.3 %, which was two times higher than that of un-treated rice straw (23.7 % ). More researches regarding straw biorefinery to bacterial cellulose are being performed in the lab and prospective results will be published in near future.展开更多
基金Project supported by the National Natural Science Foundation of China(51271166)
文摘The anodic behavior of neodymium in acidic AlCl3-1-ethyl-3-methyl-imidazolium chloride (AIC13-EMIC) ionic liquid was investigated by conducting linear sweep voltammeter and chonopotentiometry. The viscosity of Nd dissolved ionic liquid and the surface morphologies of Nd were characterized using an Ostwald viscometer and a scanning electron microscope, respectively. The chemical composition of Nd surface was indentified by Raman spectra. The results showed that dissolution of Nd under anodic polarization occurred after the breakdown of oxide films. A viscous layer formed at the interface of Nd/ionic liquid during the galvanostatic process of 5 and 20 mA/cm^2. The formation of viscous layer was attributed to the accumulation of Nd dissolved AlCl3-EMIC ionic liquid, which had high viscosity. The oxide films could be removed thoroughly and the surface of Nd was homogeneous without etching pits, when viscous layer formed in the anodic process. Otherwise, the surface showed a pitting morphology.
基金National Natural Science Foundation of China(No.51673177)National Key R&D Program of China(No.2017YFB0308500).
文摘Leather is a collagen-based biomass prepared from raw skins or hides by a series of unit operations, in which the unhairing and fiber opening are extremely important operations. However, the conventional Na2S/Ca(OH)2 system used in unhairing and fiber opening has given rise to the pollution to the environment. It is necessary to develop substitute technology for the Na2S/Ca(OH)2. In the present study, 1-allyl-3-methylimidazolium chloride ([AMIm]Cl) was used to cooperate with dispase for cycle unhairing and one-pot beamhouse to recycle waste bovine hides and com-pared with conventional processing. During those processes, the mechanism of [AMIm]Cl-dispase synergistic unhair-ing and collagen fibers opening were studied. Besides, plant hazard, organic matter and [AMIm]Cl of wastewater from [AMIm]Cl-dispase process were respectively investigated and separated to evaluate the environmental and economic benefits of the [AMIm]Cl-dispase process. As a result, enzyme activity after unhairing by [AMIm]Cl-diapase system for using 5 times is higher than that by KCl-dispase system, and needs lower unhairing time, which is because of rapid penetration of [AMIm]Cl-dispase solution in bovine hides. For this reason, the tensile strength and elastic modulus of tanned leather from [AMIm]Cl-dispase process are higher than those from the KCl-diapase and conventional pro-cesses, and its hydrothermal shrinkage temperature is comparable to that of the conventional one. Because of the 58.13% lower wastewater discharge (WD), 66.60% lower total solids (TS), 97.23% lower ammonia nitrogen (NH3-N), non-toxic wastewater and organic matter recovery in wastewater are reached from [AMIm]Cl-dispase process, which is expected to be an alternative to the conventional process to reduce environmental pollution and realize the sustainable development of technology for leather manufacturing.
基金Science and Technology Commission of Shanghai Municipality (No.11230700600No.08520750200)+2 种基金Shanghai Municipal Education Commission (No.09ZZ68)the "111 " Project(No.B07024)the Fundamental Research Funds for the Central Universities and Key Laboratory of Science &Technology of Eco-Textile (Donghua University),Ministry of Education (No.Eco-op-2009-09)
文摘The pretreatment of rice straw is often used to enhance the hydrolysis. 1-allyl-3-methylimidazolium chloride ( [ AMIM ] C1) is a kind of low viscous, nontoxic and recyclable ionic liquid. It was used to treat rice straw and improve the enzymatic hydrolysis of rice straw in this study. The factors influencing the pretreatment were as follows: the dosage of rice straw in [ AMIM ] Cl, crush mesh of rice straw, pretreatment temperature and time. After the pretreatment with a 3 % (the weight ratio of rice straw to ionic liquid) rice straw dosage in [AMIM]Cl at 110 ℃ for 1 h, the yield of reducing sugar of regenerated rice straw by 33 U/mL cellulase hydrolysis was 53.3 %, which was two times higher than that of un-treated rice straw (23.7 % ). More researches regarding straw biorefinery to bacterial cellulose are being performed in the lab and prospective results will be published in near future.