期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Joint 2D DOA and Doppler frequency estimation for L-shaped array using compressive sensing 被引量:5
1
作者 WANG Shixin ZHAO Yuan +3 位作者 LAILA Ibrahim XIONG Ying WANG Jun TANG Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期28-36,共9页
A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conven... A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm. 展开更多
关键词 electronic warfare L-shaped array joint parameter estimation L1-norm minimization Bayesian compressive sensing(cs) pair matching
下载PDF
DOA estimation of high-dimensional signals based on Krylov subspace and weighted l_(1)-norm
2
作者 YANG Zeqi LIU Yiheng +4 位作者 ZHANG Hua MA Shuai CHANG Kai LIU Ning LYU Xiaode 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期532-540,F0002,共10页
With the extensive application of large-scale array antennas,the increasing number of array elements leads to the increasing dimension of received signals,making it difficult to meet the real-time requirement of direc... With the extensive application of large-scale array antennas,the increasing number of array elements leads to the increasing dimension of received signals,making it difficult to meet the real-time requirement of direction of arrival(DOA)estimation due to the computational complexity of algorithms.Traditional subspace algorithms require estimation of the covariance matrix,which has high computational complexity and is prone to producing spurious peaks.In order to reduce the computational complexity of DOA estimation algorithms and improve their estimation accuracy under large array elements,this paper proposes a DOA estimation method based on Krylov subspace and weighted l_(1)-norm.The method uses the multistage Wiener filter(MSWF)iteration to solve the basis of the Krylov subspace as an estimate of the signal subspace,further uses the measurement matrix to reduce the dimensionality of the signal subspace observation,constructs a weighted matrix,and combines the sparse reconstruction to establish a convex optimization function based on the residual sum of squares and weighted l_(1)-norm to solve the target DOA.Simulation results show that the proposed method has high resolution under large array conditions,effectively suppresses spurious peaks,reduces computational complexity,and has good robustness for low signal to noise ratio(SNR)environment. 展开更多
关键词 direction of arrival(DOA) compressed sensing(cs) Krylov subspace l_(1)-norm dimensionality reduction
下载PDF
1-Bit压缩感知盲重构算法 被引量:5
3
作者 张京超 付宁 杨柳 《电子与信息学报》 EI CSCD 北大核心 2015年第3期567-573,共7页
1-Bit压缩感知(CS)是压缩感知理论的一个重要分支。该领域中二进制迭代硬阈值(BIHT)算法重构精度高且一致性好,是一种有效的重构算法。该文针对BIHT算法重构过程需要信号稀疏度为先验信息的问题,提出一种稀疏度自适应二进制迭代硬阈值算... 1-Bit压缩感知(CS)是压缩感知理论的一个重要分支。该领域中二进制迭代硬阈值(BIHT)算法重构精度高且一致性好,是一种有效的重构算法。该文针对BIHT算法重构过程需要信号稀疏度为先验信息的问题,提出一种稀疏度自适应二进制迭代硬阈值算法,简称为SABIHT算法。该算法修正了BIHT算法,首先通过自适应过程自动调节硬阈值参数,然后利用测试条件估计信号的稀疏度,最终实现不需要确切信号稀疏度的1-Bit压缩感知盲重构。理论分析和仿真结果表明,该算法较好地实现了未知信号稀疏度的精确重建,并且与BIHT算法相比重构精度及算法复杂度均相当。 展开更多
关键词 压缩感知 1-bit压缩感知 盲重构 二进制迭代硬阈值
下载PDF
自适应阈值的1-bit压缩感知算法 被引量:3
4
作者 司菁菁 许培 程银波 《高技术通讯》 EI CAS 北大核心 2019年第2期134-141,共8页
针对二进制迭代硬阈值(BIHT)算法中固定的量化阈值在一定程度上限制了该算法重构性能的问题,提出了一种基于自适应阈值的二进制迭代硬阈值(AT-BIHT)算法,用于实现可压缩信号的1-bit压缩感知(CS)采集与重构。该算法采用基于自适应阈值的... 针对二进制迭代硬阈值(BIHT)算法中固定的量化阈值在一定程度上限制了该算法重构性能的问题,提出了一种基于自适应阈值的二进制迭代硬阈值(AT-BIHT)算法,用于实现可压缩信号的1-bit压缩感知(CS)采集与重构。该算法采用基于自适应阈值的二进制量化器替代了BIHT算法中的符号函数,根据已获得的重构信号为当前测量值的1-bit量化选择合适的量化阈值;在继承BIHT算法优点的基础上,有效提高了重构性能。仿真实验表明,对于随机稀疏信号和实际心电信号,AT-BIHT算法的重建性能均高于BIHT算法。 展开更多
关键词 压缩感知(cs) 1-bit压缩感知 二进制迭代硬阈值(BIHT) 自适应阈值 自适应二进制迭代硬阈值(AH-BIHT)
下载PDF
基于广义模式耦合稀疏Bayesian学习的1-Bit压缩感知
5
作者 司菁菁 韩亚男 +1 位作者 张磊 程银波 《系统工程与电子技术》 EI CSCD 北大核心 2020年第12期2700-2707,共8页
在1-Bit压缩感知(compressive sensing,CS)框架下,将信号的稀疏结构先验引入广义稀疏Bayesian学习(generalized sparse Bayesian learning,Gr-SBL),研究基于Gr-SBL的1-Bit CS重构。将广义线性模型与模式耦合稀疏Bayesian学习相结合,提... 在1-Bit压缩感知(compressive sensing,CS)框架下,将信号的稀疏结构先验引入广义稀疏Bayesian学习(generalized sparse Bayesian learning,Gr-SBL),研究基于Gr-SBL的1-Bit CS重构。将广义线性模型与模式耦合稀疏Bayesian学习相结合,提出了一种基于广义模式耦合稀疏Bayesian学习1-Bit CS重构算法,简称为1-Bit Gr-PC-SBL算法。该算法将1-Bit CS重构问题迭代地分解成一系列标准CS重构问题,在信号稀疏模式未知的情况下,基于模式耦合稀疏Bayesian学习实现信号重构。进而,引入阈值自适应的二进制量化,设计了自适应阈值的1-Bit Gr-PC-SBL算法,进一步提升了算法的信号重构性能。 展开更多
关键词 1-bit压缩感知 广义稀疏Bayesian学习 模式耦合 自适应阈值
下载PDF
1-Bit compressive sensing: Reformulation and RRSP-based sign recovery theory 被引量:4
6
作者 ZHAO YunBin XU ChunLei 《Science China Mathematics》 SCIE CSCD 2016年第10期2049-2074,共26页
Recently, the 1-bit compressive sensing (1-bit CS) has been studied in the field of sparse signal recovery. Since the amplitude information of sparse signals in 1-bit CS is not available, it is often the support or ... Recently, the 1-bit compressive sensing (1-bit CS) has been studied in the field of sparse signal recovery. Since the amplitude information of sparse signals in 1-bit CS is not available, it is often the support or the sign of a signal that can be exactly recovered with a decoding method. We first show that a necessary assumption (that has been overlooked in the literature) should be made for some existing theories and discussions for 1-bit CS. Without such an assumption, the found solution by some existing decoding algorithms might be inconsistent with 1-bit measurements. This motivates us to pursue a new direction to develop uniform and nonuniform recovery theories for 1-bit CS with a new decoding method which always generates a solution consistent with 1-bit measurements. We focus on an extreme case of 1-bit CS, in which the measurements capture only the sign of the product of a sensing matrix and a signal. We show that the 1-bit CS model can be reformulated equivalently as an t0-minimization problem with linear constraints. This reformulation naturally leads to a new linear-program-based decoding method, referred to as the 1-bit basis pursuit, which is remarkably different from existing formulations. It turns out that the uniqueness condition for the solution of the 1-bit basis pursuit yields the so-called restricted range space property (RRSP) of the transposed sensing matrix. This concept provides a basis to develop sign recovery conditions for sparse signals through 1-bit measurements. We prove that if the sign of a sparse signal can be exactly recovered from 1-bit measurements with 1-bit basis pursuit, then the sensing matrix must admit a certain RRSP, and that if the sensing matrix admits a slightly enhanced RRSP, then the sign of a k-sparse signal can be exactly recovered with 1-bit basis pursuit. 展开更多
关键词 1-bit compressive sensing restricted range space property 1-bit basis pursuit linear program l0-minimization sparse signal recovery
原文传递
Efficient Channel Estimation Techniques for MIMO Systems with 1-Bit ADC 被引量:4
7
作者 Hany SHussein Shaimaa Hussein Ehab Mahmoud Mohamed 《China Communications》 SCIE CSCD 2020年第5期50-64,共15页
With a low resolution 1-bit ADC on its receiver(RX) side, MIMO with 1-bit ADC took a considerable step in the fulfillment of the hardware complexity constrains of the internet of things(IoT) PHY layer design. However,... With a low resolution 1-bit ADC on its receiver(RX) side, MIMO with 1-bit ADC took a considerable step in the fulfillment of the hardware complexity constrains of the internet of things(IoT) PHY layer design. However, applying 1-bit ADC at MIMO RX results in severe nonlinear quantization error. By which, almost all received signal amplitude information is completely distorted. Thus, MIMO channel estimation is considered as a major barrier towards practical realization of 1-bit ADC MIMO system. In this paper, two efficient sparsity-based channel estimation techniques are proposed for 1-bit ADC MIMO systems, namely the low complexity sparsity-based channel estimation(LCSCE), and the iterative adaptive sparsity channel estimation(IASCE). In these techniques, the sparsity of the 1-bit ADC MIMO channel is exploited to propose a new adaptive and iterative compressive sensing(CS) recovery algorithm to handle the 1-bit ADC quantization effect. The proposed algorithms are tested with the state-of-the-art 1-bit ADC MIMO constant envelope modulation(MIMO-CEM). The 1-bit ADC MIMO-CEM system is chosen as it fulfills both energy and hardware complexity constraints of the IoT PHY layer. Simulation results reveal the high effectiveness of the proposed algorithms in terms of spectral efficiency(SE) and computational complexity. The proposed LCSCE reduces the computational complexity of the 1-bit ADC MIMO-CEM channel estimation by 86%, while the IASCE reduces it by 96% compared to the recent techniques of MIMO-CEM channel estimation. Moreover, the proposed LCSCE and IASCE improve the spectrum efficiency by 76 % and 73 %, respectively, compared to the recent techniques. 展开更多
关键词 channel estimation 1-bit ADC MIMO sparsity recovery compressive sensing Internet of things
下载PDF
Wavelet-based L_(1/2) regularization for CS-TomoSAR imaging of forested area 被引量:1
8
作者 BI Hui CHENG Yuan +1 位作者 ZHU Daiyin HONG Wen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1160-1166,共7页
Tomographic synthetic aperture radar(TomoSAR)imaging exploits the antenna array measurements taken at different elevation aperture to recover the reflectivity function along the elevation direction.In these years,for ... Tomographic synthetic aperture radar(TomoSAR)imaging exploits the antenna array measurements taken at different elevation aperture to recover the reflectivity function along the elevation direction.In these years,for the sparse elevation distribution,compressive sensing(CS)is a developed favorable technique for the high-resolution elevation reconstruction in TomoSAR by solving an L_(1) regularization problem.However,because the elevation distribution in the forested area is nonsparse,if we want to use CS in the recovery,some basis,such as wavelet,should be exploited in the sparse L_(1/2) representation of the elevation reflectivity function.This paper presents a novel wavelet-based L_(2) regularization CS-TomoSAR imaging method of the forested area.In the proposed method,we first construct a wavelet basis,which can sparsely represent the elevation reflectivity function of the forested area,and then reconstruct the elevation distribution by using the L_(1/2) regularization technique.Compared to the wavelet-based L_(1) regularization TomoSAR imaging,the proposed method can improve the elevation recovered quality efficiently. 展开更多
关键词 tomographic synthetic aperture radar(TomoSAR) compressive sensing(cs) L_(1/2)regularization wavelet basis
下载PDF
Research on Split Augmented Largrangian Shrinkage Algorithm in Magnetic Resonance Imaging Based on Compressed Sensing 被引量:2
9
作者 ZHENG Qing-bin DONG En-qing +3 位作者 YANG Pei LIU Wei JIA Da-yu SUN Hua-kui 《Chinese Journal of Biomedical Engineering(English Edition)》 2014年第3期108-120,共13页
This paper aims to meet the requirements of reducing the scanning time of magnetic resonance imaging (MRI), accelerating MRI and reconstructing a high quality image from less acquisition data as much as possible. MR... This paper aims to meet the requirements of reducing the scanning time of magnetic resonance imaging (MRI), accelerating MRI and reconstructing a high quality image from less acquisition data as much as possible. MRI method based on compressed sensing (CS) with multiple regularizations (two regularizations including total variation (TV) norm and L1 norm or three regularizations consisting of total variation, L1 norm and wavelet tree structure) is proposed in this paper, which is implemented by applying split augmented lagrangian shrinkage algorithm (SALSA). To solve magnetic resonance image reconstruction problems with linear combinations of total variation and L1 norm, we utilized composite spht denoising (CSD) to split the original complex problem into TV norm and L1 norm regularization subproblems which were simple and easy to be solved respectively in this paper. The reconstructed image was obtained from the weighted average of solutions from two subprohlems in an iterative framework. Because each of the splitted subproblems can be regarded as MRI model based on CS with single regularization, and for solving the kind of model, split augmented lagrange algorithm has advantage over existing fast algorithm such as fast iterative shrinkage thresholding(FIST) and two step iterative shrinkage thresholding (TWIST) in convergence speed. Therefore, we proposed to adopt SALSA to solve the subproblems. Moreover, in order to solve magnetic resonance image reconstruction problems with linear combinations of total variation, L1 norm and wavelet tree structure, we can split the original problem into three subproblems in the same manner, which can be processed by existing iteration scheme. A great deal of experimental results show that the proposed methods can effectively reconstruct the original image. Compared with existing algorithms such as TVCMRI, RecPF, CSA, FCSA and WaTMRI, the proposed methods have greatly improved the quality of the reconstructed images and have better visual effect. 展开更多
关键词 magnetic resonance imaging (MRI) compressed sensing cs splitaugmented lagrangian total variation(TV) norm L1 norm
原文传递
基于压缩感知的单比特合成孔径雷达成像算法 被引量:4
10
作者 周崇彬 刘发林 李博 《微波学报》 CSCD 北大核心 2015年第6期71-77,共7页
在合成孔径雷达系统中,要提高分辨率就意味着产生大量的回波数据,从而加重了数模转换器和存储设备的负担。压缩感知理论的目的是在保证恢复稀疏信号的前提下降低采样率,而本文的目的是降低总的比特率。本文提出了一种基于压缩感知的单... 在合成孔径雷达系统中,要提高分辨率就意味着产生大量的回波数据,从而加重了数模转换器和存储设备的负担。压缩感知理论的目的是在保证恢复稀疏信号的前提下降低采样率,而本文的目的是降低总的比特率。本文提出了一种基于压缩感知的单比特合成孔径雷达成像算法,并通过仿真实验验证了该算法的性能。与匹配滤波算法相比,该算法不仅能减少数据的总比特率,而且还能有效抑制目标的旁瓣和虚假目标。并且在低信噪比条件下,该算法比传统的多比特压缩感知算法展现出更强的鲁棒性。 展开更多
关键词 单比特量化 合成孔径雷达成像 压缩感知
下载PDF
稀疏信号重构的罚函数神经网络模型 被引量:1
11
作者 蔡园园 李国成 《计算机应用》 CSCD 北大核心 2021年第S02期13-18,共6页
在压缩感知理论中,针对未知信号的稀疏性和信号非零元素位置的不确定性使得稀疏信号的重构比较困难,以及基于贪婪迭代方法的匹配追踪算法和基于凸松弛方法的基追踪算法对稀疏信号的重构概率不高的问题,提出一个罚函数神经网络模型。首... 在压缩感知理论中,针对未知信号的稀疏性和信号非零元素位置的不确定性使得稀疏信号的重构比较困难,以及基于贪婪迭代方法的匹配追踪算法和基于凸松弛方法的基追踪算法对稀疏信号的重构概率不高的问题,提出一个罚函数神经网络模型。首先在感知矩阵满足有限等距性(RIP)的前提下,压缩感知问题可以转化为等价的l_(1)-范数最小化问题。然后基于罚函数的思想构造能量函数,建立了解决稀疏信号重构的神经网络模型,并对其收敛性和优化能力进行了理论分析。仿真实验结果表明,仅需较少的观测数,稀疏信号的重构概率就能接近100%;特别是在不同的观测数下,所提出的神经网络模型与正交匹配追踪(OMP)算法、压缩采样匹配追踪(CoSaMP)算法及l_(1)-正则化最小二乘法(l_(1)-LS)相比,信号的重构概率分别平均提高了4.93个百分点、14.07个百分点和2.73个百分点。 展开更多
关键词 压缩感知 l_(1)-最优化 有限等距性 神经网络 能量函数
下载PDF
单比特压缩感知理论及应用研究 被引量:1
12
作者 王妃 熊继平 蔡丽桑 《微型机与应用》 2016年第5期12-14,共3页
单比特压缩感知是量化压缩感知的极限形式,该方法采集的是观测值的符号,仅需要1个比特单元来记录这个值,因此在硬件实施上成本低,运行速度快。目前,单比特压缩感知技术已经成为一个研究热点。本文首先介绍了单比特压缩感知的发展和研究... 单比特压缩感知是量化压缩感知的极限形式,该方法采集的是观测值的符号,仅需要1个比特单元来记录这个值,因此在硬件实施上成本低,运行速度快。目前,单比特压缩感知技术已经成为一个研究热点。本文首先介绍了单比特压缩感知的发展和研究现状,然后从检测和不检测观测符号两个方面对重构算法进行了分析,接着从单比特压缩感知的成像领域、无线传感器网络领域、医学图像领域和信号传输领域四个应用领域进行分析,最后对单比特压缩感知技术进行了总结和展望。 展开更多
关键词 单比特压缩感知 压缩感知 重构算法 应用
下载PDF
基于压缩感知的大功率半导体激光器1/f噪声参数估计
13
作者 李铨 郭树旭 +2 位作者 李扬 刘洋 徐旭 《光电子.激光》 EI CAS CSCD 北大核心 2011年第11期1602-1605,共4页
根据1/f噪声结构,基于压缩感知(CS)的正交匹配追踪去噪(OMPDN)算法,以小波树结构为分解条件,提取大功率半导体激光器(LDs)中的白噪声及1/f噪声。以小波基作为稀疏基,高斯随机矩阵作为测量矩阵对信号测量并进行CS的重建,滤除白噪声后准... 根据1/f噪声结构,基于压缩感知(CS)的正交匹配追踪去噪(OMPDN)算法,以小波树结构为分解条件,提取大功率半导体激光器(LDs)中的白噪声及1/f噪声。以小波基作为稀疏基,高斯随机矩阵作为测量矩阵对信号测量并进行CS的重建,滤除白噪声后准确提取1/f噪声信号进行器件参数估计。实验结果表明,本文方法对高斯白噪声混杂的1/f噪声进行估计,比小波变换估计更加逼近真实值。检测估计出的1/f噪声拐点位置及频率指数γ值,为分析LDs可靠性的后续工作奠定了基础。 展开更多
关键词 压缩感知(cs) 正交匹配追踪 半导体激光器(LDs) 1/f噪声
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部