In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based...In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness.展开更多
Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during ...Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during their use.However,because of the resource limitations of the end device,processors in the intelligent bearing are unable to carry the computational load of deep learning models like convolutional neural network(CNN),which involves a great amount of multiplicative operations.To minimize the computation cost of the conventional CNN,based on the idea of AdderNet,a 1-D adder neural network with a wide first-layer kernel(WAddNN)suitable for bearing fault diagnosis is proposed in this paper.The proposed method uses the l1-norm distance between filters and input features as the output response,thus making the whole network almost free of multiplicative operations.The whole model takes the original signal as the input,uses a wide kernel in the first adder layer to extract features and suppress the high frequency noise,and then uses two layers of small kernels for nonlinear mapping.Through experimental comparison with CNN models of the same structure,WAddNN is able to achieve a similar accuracy as CNN models with significantly reduced computational cost.The proposed model provides a new fault diagnosis method for intelligent bearings with limited resources.展开更多
In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the e...In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach.展开更多
Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor ...Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor one-resistor(1T1R)memristor arrays is limited by the non-ideality of the devices,which prevents the hardware implementation of large and complex networks.In this work,we propose the depthwise separable convolution and bidirectional gate recurrent unit(DSC-BiGRU)network,a lightweight and highly robust hybrid neural network based on 1T1R arrays that enables efficient processing of EEG signals in the temporal,frequency and spatial domains by hybridizing DSC and BiGRU blocks.The network size is reduced and the network robustness is improved while ensuring the network classification accuracy.In the simulation,the measured non-idealities of the 1T1R array are brought into the network through statistical analysis.Compared with traditional convolutional networks,the network parameters are reduced by 95%and the network classification accuracy is improved by 21%at a 95%array yield rate and 5%tolerable error.This work demonstrates that lightweight and highly robust networks based on memristor arrays hold great promise for applications that rely on low consumption and high efficiency.展开更多
Audiovisual speech recognition is an emerging research topic.Lipreading is the recognition of what someone is saying using visual information,primarily lip movements.In this study,we created a custom dataset for India...Audiovisual speech recognition is an emerging research topic.Lipreading is the recognition of what someone is saying using visual information,primarily lip movements.In this study,we created a custom dataset for Indian English linguistics and categorized it into three main categories:(1)audio recognition,(2)visual feature extraction,and(3)combined audio and visual recognition.Audio features were extracted using the mel-frequency cepstral coefficient,and classification was performed using a one-dimension convolutional neural network.Visual feature extraction uses Dlib and then classifies visual speech using a long short-term memory type of recurrent neural networks.Finally,integration was performed using a deep convolutional network.The audio speech of Indian English was successfully recognized with accuracies of 93.67%and 91.53%,respectively,using testing data from 200 epochs.The training accuracy for visual speech recognition using the Indian English dataset was 77.48%and the test accuracy was 76.19%using 60 epochs.After integration,the accuracies of audiovisual speech recognition using the Indian English dataset for training and testing were 94.67%and 91.75%,respectively.展开更多
Growing demand for seafood and reduced fishery harvests have raised intensive farming of marine aquaculture in coastal regions,which may cause severe coastal water problems without adequate environmental management.Ef...Growing demand for seafood and reduced fishery harvests have raised intensive farming of marine aquaculture in coastal regions,which may cause severe coastal water problems without adequate environmental management.Effective mapping of mariculture areas is essential for the protection of coastal environments.However,due to the limited spatial coverage and complex structures,it is still challenging for traditional methods to accurately extract mariculture areas from medium spatial resolution(MSR)images.To solve this problem,we propose to use the full resolution cascade convolutional neural network(FRCNet),which maintains effective features over the whole training process,to identify mariculture areas from MSR images.Specifically,the FRCNet uses a sequential full resolution neural network as the first-level subnetwork,and gradually aggregates higher-level subnetworks in a cascade way.Meanwhile,we perform a repeated fusion strategy so that features can receive information from different subnetworks simultaneously,leading to rich and representative features.As a result,FRCNet can effectively recognize different kinds of mariculture areas from MSR images.Results show that FRCNet obtained better performance than other classical and recently proposed methods.Our developed methods can provide valuable datasets for large-scale and intelligent modeling of the marine aquaculture management and coastal zone planning.展开更多
针对传统机器学习方法对特征依赖大,以及传统卷积神经网络只通过提取重要的局部特征来完成识别分类,收敛速度慢的问题,提出了一维多尺度卷积神经网络和门控循环单元相结合的入侵检测方法。该方法使用一维多尺度卷积神经网络加强对特征...针对传统机器学习方法对特征依赖大,以及传统卷积神经网络只通过提取重要的局部特征来完成识别分类,收敛速度慢的问题,提出了一维多尺度卷积神经网络和门控循环单元相结合的入侵检测方法。该方法使用一维多尺度卷积神经网络加强对特征的捕捉能力,加快收敛速度,采用门控循环单元把握空间特征,减少通道数量扩张,降低数据维度。使用KDD CUP 99数据集和密西西比州大学的天然气管道的数据集进行仿真实验,结果表明与经典的机器学习分类器相比,该方法具有较高的入侵检测性能和较好的泛化能力。展开更多
In order to solve the problem of low accuracy of construction project duration prediction, this paper proposes a CNN attention BP combination model </span><span style="font-family:"white-space:...In order to solve the problem of low accuracy of construction project duration prediction, this paper proposes a CNN attention BP combination model </span><span style="font-family:"white-space:normal;">project risk prediction model based on attention mechanism, one-dimensional </span><span style="font-family:"white-space:normal;">convolutional neural network (1d-cnn) and BP neural network. Firstly, the literature analysis method is used to select the risk evaluation index value of construction project, and the attention mechanism is used to determine the weight of risk factors on construction period prediction;then, BP neural network is used to predict the project duration, and accuracy, cross entropy loss function and F1 score are selected to comprehensively evaluate the performance of 1d-cnn-attention-bp combined model. The experimental results show that the duration risk prediction accuracy of the risk prediction model proposed in this paper is more than 90%, which can meet the risk prediction of construction projects with high accuracy.展开更多
Weed is a plant that grows along with nearly allfield crops,including rice,wheat,cotton,millets and sugar cane,affecting crop yield and quality.Classification and accurate identification of all types of weeds is a cha...Weed is a plant that grows along with nearly allfield crops,including rice,wheat,cotton,millets and sugar cane,affecting crop yield and quality.Classification and accurate identification of all types of weeds is a challenging task for farmers in earlier stage of crop growth because of similarity.To address this issue,an efficient weed classification model is proposed with the Deep Convolutional Neural Network(CNN)that implements automatic feature extraction and performs complex feature learning for image classification.Throughout this work,weed images were trained using the proposed CNN model with evolutionary computing approach to classify the weeds based on the two publicly available weed datasets.The Tamil Nadu Agricultural University(TNAU)dataset used as afirst dataset that consists of 40 classes of weed images and the other dataset is from Indian Council of Agriculture Research–Directorate of Weed Research(ICAR-DWR)which contains 50 classes of weed images.An effective Particle Swarm Optimization(PSO)technique is applied in the proposed CNN to automa-tically evolve and improve its classification accuracy.The proposed model was evaluated and compared with pre-trained transfer learning models such as GoogLeNet,AlexNet,Residual neural Network(ResNet)and Visual Geometry Group Network(VGGNet)for weed classification.This work shows that the performance of the PSO assisted proposed CNN model is significantly improved the success rate by 98.58%for TNAU and 97.79%for ICAR-DWR weed datasets.展开更多
基金supported by Jiangsu Social Science Foundation(No.20GLD008)Science,Technology Projects of Jiangsu Provincial Department of Communications(No.2020Y14)Joint Fund for Civil Aviation Research(No.U1933202)。
文摘In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness.
基金support provided by the China National Key Research and Development Program of China under Grant 2019YFB2004300the National Natural Science Foundation of China under Grant 51975065 and 51805051.
文摘Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during their use.However,because of the resource limitations of the end device,processors in the intelligent bearing are unable to carry the computational load of deep learning models like convolutional neural network(CNN),which involves a great amount of multiplicative operations.To minimize the computation cost of the conventional CNN,based on the idea of AdderNet,a 1-D adder neural network with a wide first-layer kernel(WAddNN)suitable for bearing fault diagnosis is proposed in this paper.The proposed method uses the l1-norm distance between filters and input features as the output response,thus making the whole network almost free of multiplicative operations.The whole model takes the original signal as the input,uses a wide kernel in the first adder layer to extract features and suppress the high frequency noise,and then uses two layers of small kernels for nonlinear mapping.Through experimental comparison with CNN models of the same structure,WAddNN is able to achieve a similar accuracy as CNN models with significantly reduced computational cost.The proposed model provides a new fault diagnosis method for intelligent bearings with limited resources.
文摘In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach.
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFB2205102)the National Natural Science Foundation of China(Grant Nos.61974164,62074166,61804181,62004219,62004220,and 62104256).
文摘Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor one-resistor(1T1R)memristor arrays is limited by the non-ideality of the devices,which prevents the hardware implementation of large and complex networks.In this work,we propose the depthwise separable convolution and bidirectional gate recurrent unit(DSC-BiGRU)network,a lightweight and highly robust hybrid neural network based on 1T1R arrays that enables efficient processing of EEG signals in the temporal,frequency and spatial domains by hybridizing DSC and BiGRU blocks.The network size is reduced and the network robustness is improved while ensuring the network classification accuracy.In the simulation,the measured non-idealities of the 1T1R array are brought into the network through statistical analysis.Compared with traditional convolutional networks,the network parameters are reduced by 95%and the network classification accuracy is improved by 21%at a 95%array yield rate and 5%tolerable error.This work demonstrates that lightweight and highly robust networks based on memristor arrays hold great promise for applications that rely on low consumption and high efficiency.
文摘Audiovisual speech recognition is an emerging research topic.Lipreading is the recognition of what someone is saying using visual information,primarily lip movements.In this study,we created a custom dataset for Indian English linguistics and categorized it into three main categories:(1)audio recognition,(2)visual feature extraction,and(3)combined audio and visual recognition.Audio features were extracted using the mel-frequency cepstral coefficient,and classification was performed using a one-dimension convolutional neural network.Visual feature extraction uses Dlib and then classifies visual speech using a long short-term memory type of recurrent neural networks.Finally,integration was performed using a deep convolutional network.The audio speech of Indian English was successfully recognized with accuracies of 93.67%and 91.53%,respectively,using testing data from 200 epochs.The training accuracy for visual speech recognition using the Indian English dataset was 77.48%and the test accuracy was 76.19%using 60 epochs.After integration,the accuracies of audiovisual speech recognition using the Indian English dataset for training and testing were 94.67%and 91.75%,respectively.
基金supported by the National Natural Science Foundation of China[grant numbers 42101404,42107498]the National Key Research and Development Program of China[grant number 2020YFC1807501].
文摘Growing demand for seafood and reduced fishery harvests have raised intensive farming of marine aquaculture in coastal regions,which may cause severe coastal water problems without adequate environmental management.Effective mapping of mariculture areas is essential for the protection of coastal environments.However,due to the limited spatial coverage and complex structures,it is still challenging for traditional methods to accurately extract mariculture areas from medium spatial resolution(MSR)images.To solve this problem,we propose to use the full resolution cascade convolutional neural network(FRCNet),which maintains effective features over the whole training process,to identify mariculture areas from MSR images.Specifically,the FRCNet uses a sequential full resolution neural network as the first-level subnetwork,and gradually aggregates higher-level subnetworks in a cascade way.Meanwhile,we perform a repeated fusion strategy so that features can receive information from different subnetworks simultaneously,leading to rich and representative features.As a result,FRCNet can effectively recognize different kinds of mariculture areas from MSR images.Results show that FRCNet obtained better performance than other classical and recently proposed methods.Our developed methods can provide valuable datasets for large-scale and intelligent modeling of the marine aquaculture management and coastal zone planning.
文摘针对传统机器学习方法对特征依赖大,以及传统卷积神经网络只通过提取重要的局部特征来完成识别分类,收敛速度慢的问题,提出了一维多尺度卷积神经网络和门控循环单元相结合的入侵检测方法。该方法使用一维多尺度卷积神经网络加强对特征的捕捉能力,加快收敛速度,采用门控循环单元把握空间特征,减少通道数量扩张,降低数据维度。使用KDD CUP 99数据集和密西西比州大学的天然气管道的数据集进行仿真实验,结果表明与经典的机器学习分类器相比,该方法具有较高的入侵检测性能和较好的泛化能力。
文摘In order to solve the problem of low accuracy of construction project duration prediction, this paper proposes a CNN attention BP combination model </span><span style="font-family:"white-space:normal;">project risk prediction model based on attention mechanism, one-dimensional </span><span style="font-family:"white-space:normal;">convolutional neural network (1d-cnn) and BP neural network. Firstly, the literature analysis method is used to select the risk evaluation index value of construction project, and the attention mechanism is used to determine the weight of risk factors on construction period prediction;then, BP neural network is used to predict the project duration, and accuracy, cross entropy loss function and F1 score are selected to comprehensively evaluate the performance of 1d-cnn-attention-bp combined model. The experimental results show that the duration risk prediction accuracy of the risk prediction model proposed in this paper is more than 90%, which can meet the risk prediction of construction projects with high accuracy.
文摘Weed is a plant that grows along with nearly allfield crops,including rice,wheat,cotton,millets and sugar cane,affecting crop yield and quality.Classification and accurate identification of all types of weeds is a challenging task for farmers in earlier stage of crop growth because of similarity.To address this issue,an efficient weed classification model is proposed with the Deep Convolutional Neural Network(CNN)that implements automatic feature extraction and performs complex feature learning for image classification.Throughout this work,weed images were trained using the proposed CNN model with evolutionary computing approach to classify the weeds based on the two publicly available weed datasets.The Tamil Nadu Agricultural University(TNAU)dataset used as afirst dataset that consists of 40 classes of weed images and the other dataset is from Indian Council of Agriculture Research–Directorate of Weed Research(ICAR-DWR)which contains 50 classes of weed images.An effective Particle Swarm Optimization(PSO)technique is applied in the proposed CNN to automa-tically evolve and improve its classification accuracy.The proposed model was evaluated and compared with pre-trained transfer learning models such as GoogLeNet,AlexNet,Residual neural Network(ResNet)and Visual Geometry Group Network(VGGNet)for weed classification.This work shows that the performance of the PSO assisted proposed CNN model is significantly improved the success rate by 98.58%for TNAU and 97.79%for ICAR-DWR weed datasets.