提出了一种基于L1范数的二维局部保留映射(two-dimensional locality preserving projections based on L1-norm,2DLPP-L1)特征提取方法。与传统的基于L2范数的二维局部保留映射(2DLPP)相比,所提方法有两个优点。首先,由于L1范数对噪声...提出了一种基于L1范数的二维局部保留映射(two-dimensional locality preserving projections based on L1-norm,2DLPP-L1)特征提取方法。与传统的基于L2范数的二维局部保留映射(2DLPP)相比,所提方法有两个优点。首先,由于L1范数对噪声不敏感,因此它具有更强的抗噪声能力;其次,它不需要进行特征值分解。在两个人脸数据库和一个手写数字数据集上的实验结果表明,当训练集中有噪声时,所提的2DLPP-L1能够取得优于传统2DLPP的分类性能。展开更多
文摘提出了一种基于L1范数的二维局部保留映射(two-dimensional locality preserving projections based on L1-norm,2DLPP-L1)特征提取方法。与传统的基于L2范数的二维局部保留映射(2DLPP)相比,所提方法有两个优点。首先,由于L1范数对噪声不敏感,因此它具有更强的抗噪声能力;其次,它不需要进行特征值分解。在两个人脸数据库和一个手写数字数据集上的实验结果表明,当训练集中有噪声时,所提的2DLPP-L1能够取得优于传统2DLPP的分类性能。