Certain amino acids changes in the human Na^(+)/K^(+)-ATPase pump,ATPase Na^(+)/K^(+)transporting subunit alpha 1(ATP1A1),cause Charcot-Marie-Tooth disease type 2(CMT2)disease and refractory seizures.To develop in viv...Certain amino acids changes in the human Na^(+)/K^(+)-ATPase pump,ATPase Na^(+)/K^(+)transporting subunit alpha 1(ATP1A1),cause Charcot-Marie-Tooth disease type 2(CMT2)disease and refractory seizures.To develop in vivo models to study the role of Na^(+)/K^(+)-ATPase in these diseases,we modified the Drosophila gene homolog,Atpα,to mimic the human ATP1A1 gene mutations that cause CMT2.Mutations located within the helical linker region of human ATP1A1(I592T,A597T,P600T,and D601F)were simultaneously introduced into endogenous Drosophila Atpαby CRISPR/Cas9-mediated genome editing,generating the Atpα^(TTTF)model.In addition,the same strategy was used to generate the corresponding single point mutations in flies(Atpα^(I571T),Atpα^(A576T),Atpα^(P579T),and Atpα^(D580F)).Moreover,a deletion mutation(Atpα^(mut))that causes premature termination of translation was generated as a positive control.Of these alleles,we found two that could be maintained as homozygotes(Atpα^(I571T)and Atpα^(P579T)).Three alleles(Atpα^(A576T),Atpα^(P579)and Atpα^(D580F))can form heterozygotes with the Atpαmut allele.We found that the Atpαallele carrying these CMT2-associated mutations showed differential phenotypes in Drosophila.Flies heterozygous for Atpα^(TTTF)mutations have motor performance defects,a reduced lifespan,seizures,and an abnormal neuronal morphology.These Drosophila models will provide a new platform for studying the function and regulation of the sodium-potassium pump.展开更多
Selenium nanoparticles(SeNPs)have been demonstrated potential for use in diseases associated with oxidative stress.Functionalized SeNPs with lower toxicity and higher biocompatibility could bring better therapeutic ac...Selenium nanoparticles(SeNPs)have been demonstrated potential for use in diseases associated with oxidative stress.Functionalized SeNPs with lower toxicity and higher biocompatibility could bring better therapeutic activity and clinical application value.Herein,this work was conducted to investigate the protective effect of Pleurotus tuber-regium polysaccharide-protein complex funtionnalized SeNPs(PTR-SeNPs)against acetaminophen(APAP)-induced oxidative injure in HepG2 cells and C57BL/6J mouse liver.Further elucidation of the underlying molecular mechanism,in particular their modulation of Nrf2 signaling pathway was also performed.The results showed that PTR-SeNPs could significantly ameliorate APAP-induced oxidative injury as evidenced by a range of biochemical analysis,histopathological examination and immunoblotting study.PTR-SeNPs could hosphorylate and activate PKCδ,depress Keap1,and increase nuclear accumulation of Nrf2,resulting in upregulation of GCLC,GCLM,HO-1 and NQO-1 expression.Besides,PTR-SeNPs suppressed the biotransformation of APAP to generate intracellular ROS through CYP 2E1 inhibition,restoring the mitochondrial morphology.Furthermore,the protective effect of PTR-SeNPs against APAP induced hepatotoxicity was weakened as Nrf2 was depleted in vivo,indicating the pivotal role of Nrf2 signaling pathway in PTR-SeNPs mediated hepatoprotective efficacy.Being a potential hepatic protectant,PTR-SeNPs could serve as a new source of selenium supplement for health-promoting and biomedical applications.展开更多
This editorial summarizes the latest literature on the roles of neuronal PAS domain protein 2 and KN motif/ankyrin repeat domain 1 in type 2 diabetes(T2D).We highlight their involvement inβ-cell dysfunction,explore t...This editorial summarizes the latest literature on the roles of neuronal PAS domain protein 2 and KN motif/ankyrin repeat domain 1 in type 2 diabetes(T2D).We highlight their involvement inβ-cell dysfunction,explore their potential as therapeutic targets,and discuss the implications for new treatment strategies.We offer valuable insights into relevant gene regulation and cellular mechanisms relevant for the targeted management of T2D.展开更多
The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment;however,the molecular mechanisms underlying the formation and function of the bloo...The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment;however,the molecular mechanisms underlying the formation and function of the blood-brain barrier remain poorly understood.The major facilitator superfamily domain containing 2A has been identified as a key regulator of blood-brain barrier function.It plays a critical role in promoting and maintaining the formation and functional stability of the blood-brain barrier,in addition to the transport of lipids,such as docosahexaenoic acid,across the blood-brain barrier.Furthermore,an increasing number of studies have suggested that major facilitator superfamily domain containing 2A is involved in the molecular mechanisms of blood-brain barrier dysfunction in a variety of neurological diseases;however,little is known regarding the mechanisms by which major facilitator superfamily domain containing 2A affects the blood-brain barrier.This paper provides a comprehensive and systematic review of the close relationship between major facilitator superfamily domain containing 2A proteins and the blood-brain barrier,including their basic structures and functions,cross-linking between major facilitator superfamily domain containing 2A and the blood-brain barrier,and the in-depth studies on lipid transport and the regulation of blood-brain barrier permeability.This comprehensive systematic review contributes to an in-depth understanding of the important role of major facilitator superfamily domain containing 2A proteins in maintaining the structure and function of the blood-brain barrier and the research progress to date.This will not only help to elucidate the pathogenesis of neurological diseases,improve the accuracy of laboratory diagnosis,and optimize clinical treatment strategies,but it may also play an important role in prognostic monitoring.In addition,the effects of major facilitator superfamily domain containing 2A on blood-brain barrier leakage in various diseases and the research progress on cross-blood-brain barrier drug delivery are summarized.This review may contribute to the development of new approaches for the treatment of neurological diseases.展开更多
Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden.Epidemiological data supporting a close rel...Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden.Epidemiological data supporting a close relationship between these two aging-related diseases have resulted in the investigation of shared pathophysiological molecular mechanisms.Impaired insulin signaling in the brain has gained increasing attention during the last decade and has been suggested to contribute to the development of Parkinson's disease through the dysregulation of several pathological processes.The contribution of type 2 diabetes mellitus and insulin resistance in neurodegeneration in Parkinson's disease,with emphasis on brain insulin resistance,is extensively discussed in this article and new therapeutic strategies targeting this pathological link are presented and reviewed.展开更多
BACKGROUND Diabetes mellitus type 2(T2DM)is formed by defective insulin secretion with the addition of peripheral tissue resistance of insulin action.It has been affecting over 400 million people all over the world.AI...BACKGROUND Diabetes mellitus type 2(T2DM)is formed by defective insulin secretion with the addition of peripheral tissue resistance of insulin action.It has been affecting over 400 million people all over the world.AIM To explore the pathogenesis of T2DM and to develop and implement new prevention and treatment strategies for T2DM.METHODS Receiver operating characteristic(ROC)curve analysis was used to conduct diagnostic markers.The expression level of genes was determined by reverse transcription-PCR as well as Western blot.Cell proliferation assays were performed by cell counting kit-8(CCK-8)tests.At last,T2DM mice underwent Roux-en-Y gastric bypass surgery.RESULTS We found that NPAS2 was significantly up-regulated in isletβcell apoptosis of T2DM.The ROC curve revealed that NPAS2 was capable of accurately diagnosing T2DM.NPAS2 overexpression did increase the level of KANK1.In addition,the CCK-8 test revealed knocking down NPAS2 and KANK1 increased the proliferation of MIN6 cells.At last,we found that gastric bypass may treat type 2 diabetes by down-regulating NPAS2 and KANK1.CONCLUSION This study demonstrated that NPAS2 inducedβcell dysfunction by regulating KANK1 expression in type 2 diabetes,and it may be an underlying therapy target of T2DM.展开更多
BACKGROUND The association of single nucleotide polymorphism of KCNQ1 gene rs2237895 with type 2 diabetes mellitus(T2DM)is currently controversial.It is unknown whether this association can be gene realized across dif...BACKGROUND The association of single nucleotide polymorphism of KCNQ1 gene rs2237895 with type 2 diabetes mellitus(T2DM)is currently controversial.It is unknown whether this association can be gene realized across different populations.AIM To determine the association of KCNQ1 rs2237895 with T2DM and provide reliable evidence for genetic susceptibility to T2DM.METHODS We searched PubMed,Embase,Web of Science,Cochrane Library,Medline,Baidu Academic,China National Knowledge Infrastructure,China Biomedical Literature Database,and Wanfang to investigate the association between KCNQ1 gene rs2237895 and the risk of T2DM up to January 12,2022.Review Manager 5.4 was used to analyze the association of the KCNQ1 gene rs2237895 polymorphism with T2DM and to evaluate the publication bias of the selected literature.RESULTS Twelve case–control studies(including 11273 cases and 11654 controls)met our inclusion criteria.In the full population,allelic model[odds ratio(OR):1.19;95%confidence interval(95%CI):1.09–1.29;P<0.0001],recessive model(OR:1.20;95%CI:1.11–1.29;P<0.0001),dominant model(OR:1.27.95%CI:1.14–1.42;P<0.0001),and codominant model(OR:1.36;95%CI:1.15–1.60;P=0.0003)(OR:1.22;95%CI:1.10–1.36;P=0.0002)indicated that the KCNQ1 gene rs2237895 polymorphism was significantly correlated with susceptibility to T2DM.In stratified analysis,this association was confirmed in Asian populations:allelic model(OR:1.25;95%CI:1.13–1.37;P<0.0001),recessive model(OR:1.29;95%CI:1.11–1.49;P=0.0007),dominant model(OR:1.35;95%CI:1.20–1.52;P<0.0001),codominant model(OR:1.49;95%CI:1.22–1.81;P<0.0001)(OR:1.26;95%CI:1.16–1.36;P<0.0001).In non-Asian populations,this association was not significant:Allelic model(OR:1.06,95%CI:0.98–1.14;P=0.12),recessive model(OR:1.04;95%CI:0.75–1.42;P=0.83),dominant model(OR:1.06;95%CI:0.98–1.15;P=0.15),codominant model(OR:1.08;95%CI:0.82–1.42;P=0.60.OR:1.15;95%CI:0.95–1.39;P=0.14).CONCLUSION KCNQ1 gene rs2237895 was significantly associated with susceptibility to T2DM in an Asian population.Carriers of the C allele had a higher risk of T2DM.This association was not significant in non-Asian populations.展开更多
Objective Recent studies have indicated potential anti-inflammatory effects of glucagon-like peptide-1 receptor agonists(GLP-1RAs)on asthma,which is often comorbid with type 2 diabetes mellitus(T2DM)and obesity.Theref...Objective Recent studies have indicated potential anti-inflammatory effects of glucagon-like peptide-1 receptor agonists(GLP-1RAs)on asthma,which is often comorbid with type 2 diabetes mellitus(T2DM)and obesity.Therefore,we conducted a meta-analysis to assess the association between the administration of glucagon-like peptide-1(GLP-1)receptor-based agonists and the incidence of asthma in patients with T2DM and/or obesity.Methods PubMed,Web of Science,Embase,the Cochrane Central Register of Controlled Trials,and Clinicaltrial.gov were systematically searched from inception to July 2023.Randomized controlled trials(RCTs)of GLP-1 receptor-based agonists(GLP-1RA,GLP-1 based dual and triple receptor agonist)with reports of asthma events were included.Outcomes were computed as risk ratios(RR)using a fixedeffects model.Results Overall,39 RCTs with a total of 85,755 participants were included.Compared to non-GLP-1 receptor-based agonist users,a trend of reduced risk of asthma was observed in patients with T2DM or obesity using GLP-1 receptor-based agonist treatments,although the difference was not statistically significant[RR=0.91,95%confidence interval(CI):0.68 to 1.24].Further Subgroup analyses indicated that the use of light-molecular-weight GLP-1RAs might be associated with a reduced the risk of asthma when compared with non-users(RR=0.65,95%CI:0.43 to 0.99,P=0.043).We also performed sensitivity analyses for participant characteristics,study design,drug structure,duration of action,and drug subtypes.However,no significant associations were observed.Conclusion Compared with non-users,a modest reduction in the incidence of asthma was observed in patients with T2DM or obesity using GLP-1 receptor-based agonist treatments.Further investigations are warranted to assess the association between GLP-1 receptor-based agonists and the risk of asthma.展开更多
BACKGROUND Glucagon-like peptide-1 receptor agonists(GLP-1RA)and sodium-glucose co-transporter-2 inhibitors(SGLT-2I)are associated with significant cardiovascular benefit in type 2 diabetes(T2D).However,GLP-1RA or SGL...BACKGROUND Glucagon-like peptide-1 receptor agonists(GLP-1RA)and sodium-glucose co-transporter-2 inhibitors(SGLT-2I)are associated with significant cardiovascular benefit in type 2 diabetes(T2D).However,GLP-1RA or SGLT-2I alone may not improve some cardiovascular outcomes in patients with prior cardiovascular co-morbidities.AIM To explore whether combining GLP-1RA and SGLT-2I can achieve additional benefit in preventing cardiovascular diseases in T2D.METHODS The systematic review was conducted according to PRISMA recommendations.The protocol was registered on PROSPERO(ID:42022385007).A total of 107049 participants from eligible cardiovascular outcomes trials of GLP-1RA and SGLT-2I were included in network meta-regressions to estimate cardiovascular benefit of the combination treatment.Effect modification of prior myocardial infarction(MI)and heart failure(HF)was also explored to provide clinical insight as to when the INTRODUCTION The macro-and micro-vascular benefits of glucagon-like peptide-1 receptor agonists(GLP-1RA)and sodium-glucose co-transporter-2 inhibitors(SGLT-2I)are independent of their glucose-lowering effects[1].In patients with type 2 diabetes(T2D),the major cardiovascular outcome trials(CVOT)showed that dipeptidyl peptidase-4 inhibitors(DPP-4I)did not improve cardiovascular outcomes[2],whereas cardiovascular benefit of GLP-1RA or SGLT-2I was significant[3,4].Further subgroup analyses indicated that the background cardiovascular risk should be considered when examining the cardiovascular outcomes of these newer glucose-lowering medications.For instance,prevention of major adverse cardiovascular events(MACE)was only seen in those patients with baseline atherosclerotic cardiovascular disease[3,4].Moreover,a series of CVOT conducted in patients with heart failure(HF)have demonstrated that(compared with placebo)SGLT-2I significantly reduced risk of hospitalization for HF or cardiovascular death,irrespective of their history of T2D[5-8].However,similar cardiovascular benefits were not observed in those with myocardial infarction(MI)[9,10].Cardiovascular co-morbidities are not only approximately twice as common but are also associated with dispropor-tionately worse cardiovascular outcomes in patients with T2D,compared to the general population[11].Therefore,it is of clinical importance to investigate whether the combination treatment of GLP-1RA and SGLT-2I could achieve greater cardiovascular benefit,particularly when considering patients with cardiovascular co-morbidities who may not gain sufficient cardiovascular protection from the monotherapies.This systematic review with multiple network meta-regressions was mainly aimed to explore whether combining GLP-1RA and SGLT-2I can provide additional cardiovascular benefit in T2D.Cardiovascular outcomes of these newer antidiabetic medications were also estimated under effect modification of prior cardiovascular diseases.This was to provide clinical insight as to when the combination treatment might be prioritized.展开更多
BACKGROUND Gastrointestinal stromal tumors(GISTs)are typical gastrointestinal tract neoplasms.Imatinib is the first-line therapy for GIST patients.Drug resistance limits the long-term effectiveness of imatinib.The reg...BACKGROUND Gastrointestinal stromal tumors(GISTs)are typical gastrointestinal tract neoplasms.Imatinib is the first-line therapy for GIST patients.Drug resistance limits the long-term effectiveness of imatinib.The regulatory effect of insulin-like growth factor 2(IGF2)has been confirmed in various cancers and is related to resistance to chemotherapy and a worse prognosis.AIM To further investigate the mechanism of IGF2 specific to GISTs.METHODS IGF2 was screened and analyzed using Gene Expression Omnibus(GEO:GSE225819)data.After IGF2 knockdown or overexpression by transfection,the phenotypes(proliferation,migration,invasion,apoptosis)of GIST cells were characterized by cell counting kit 8,Transwell,and flow cytometry assays.We used western blotting to evaluate pathway-associated and epithelial-mesenchymal transition(EMT)-associated proteins.We injected transfected cells into nude mice to establish a tumor xenograft model and observed the occurrence and metastasis of GIST.RESULTS Data from the GEO indicated that IGF2 expression is high in GISTs,associated with liver metastasis,and closely related to drug resistance.GIST cells with high expression of IGF2 had increased proliferation and migration,invasiveness and EMT.Knockdown of IGF2 significantly inhibited those activities.In addition,OEIGF2 promoted GIST metastasis in vivo in nude mice.IGF2 activated IGF1R signaling in GIST cells,and IGF2/IGF1R-mediated glycolysis was required for GIST with liver metastasis.GIST cells with IGF2 knockdown were sensitive to imatinib treatment when IGF2 overexpression significantly raised imatinib resistance.Moreover,2-deoxy-D-glucose(a glycolysis inhibitor)treatment reversed IGF2 overexpressionmediated imatinib resistance in GISTs.CONCLUSION IGF2 targeting of IGF1R signaling inhibited metastasis and decreased imatinib resistance by driving glycolysis in GISTs.展开更多
This editorial is stimulated by the article by Alqifari et al published in the World Journal of Diabetes(2024).Alqifari et al focus on practical advice for the clinical use of glucagon-like-peptide-1(GLP-1)receptor ag...This editorial is stimulated by the article by Alqifari et al published in the World Journal of Diabetes(2024).Alqifari et al focus on practical advice for the clinical use of glucagon-like-peptide-1(GLP-1)receptor agonists(GLP-1RAs)in the management of type 2 diabetes and this editorial provides complementary information.We initially give a brief historical perspective of the development of GLP-1RAs stimulated by recognition of the‘incretin effect’,the substantially greater insulin increase to enteral when compared to euglycaemic intravenous glucose,and the identification of the incretin hormones,GIP and GLP-1.In addition to stimulating insulin,GLP-1 reduces postprandial glucose levels by slowing gastric emptying.GLP-1RAs were developed because native GLP-1 has a very short plasma half-life.The majority of current GLP-1RAs are administered by subcutaneous injection once a week.They are potent in glucose lowering without leading to hypoglycaemia,stimulate weight loss in obese individuals and lead to cardiovascular and renal protection.The landscape in relation to GLP-1RAs is broadening rapidly,with different formulations and their combination with other peptides to facilitate both glucose lowering and weight loss.There is a need for more information relating to the effects of GLP-1RAs to induce gastrointestinal symptoms and slow gastric emptying which is likely to allow their use to become more effective and personalised.展开更多
BACKGROUND Recently,type 2 diabetic osteoporosis(T2DOP)has become a research hotspot for the complications of diabetes,but the specific mechanism of its occurrence and development remains unknown.Ferroptosis caused by...BACKGROUND Recently,type 2 diabetic osteoporosis(T2DOP)has become a research hotspot for the complications of diabetes,but the specific mechanism of its occurrence and development remains unknown.Ferroptosis caused by iron overload is con-sidered an important cause of T2DOP.Polycytosine RNA-binding protein 1(PCBP1),an iron ion chaperone,is considered a protector of ferroptosis.AIM To investigate the existence of ferroptosis and specific role of PCBP1 in the development of type 2 diabetes.METHODS A cell counting kit-8 assay was used to detect changes in osteoblast viability under high glucose(HG)and/or ferroptosis inhibitors at different concentrations and times.Transmission electron microscopy was used to examine the morpho-logical changes in the mitochondria of osteoblasts under HG,and western blotting was used to detect the expression levels of PCBP1,ferritin,and the ferroptosis-related protein glutathione peroxidase 4(GPX4).A lentivirus silenced and overex-pressed PCBP1.Western blotting was used to detect the expression levels of the osteoblast functional proteins osteoprotegerin(OPG)and osteocalcin(OCN),whereas flow cytometry was used to detect changes in reactive oxygen species(ROS)levels in each group.RESULTS Under HG,the viability of osteoblasts was considerably decreased,the number of mitochondria undergoing atrophy was considerably increased,PCBP1 and ferritin expression levels were increased,and GPX4 expression was decreased.Western blotting results demonstrated that infection with lentivirus overexpressing PCBP1,increased the expression levels of ferritin,GPX4,OPG,and OCN,compared with the HG group.Flow cytometry results showed a reduction in ROS,and an opposite result was obtained after silencing PCBP1.CONCLUSION PCBP1 may protect osteoblasts and reduce the harm caused by ferroptosis by promoting ferritin expression under a HG environment.Moreover,PCBP1 may be a potential therapeutic target for T2DOP.展开更多
BACKGROUND Cognitive dysfunction is the main manifestation of central neuropathy.Although cognitive impairments tend to be overlooked in patients with diabetes mellitus(DM),there is a growing body of evidence linking ...BACKGROUND Cognitive dysfunction is the main manifestation of central neuropathy.Although cognitive impairments tend to be overlooked in patients with diabetes mellitus(DM),there is a growing body of evidence linking DM to cognitive dysfunction.Hyperglycemia is closely related to neurological abnormalities,while often disregarded in clinical practice.Changes in cerebral neurotransmitter levels are associated with a variety of neurological abnormalities and may be closely related to blood glucose control in patients with type 2 DM(T2DM).AIM To evaluate the concentrations of cerebral neurotransmitters in T2DM patients exhibiting different hemoglobin A1c(HbA1c)levels.METHODS A total of 130 T2DM patients were enrolled at the Department of Endocrinology of Shanghai East Hospital.The participants were divided into four groups according to their HbA1c levels using the interquartile method,namely Q1(<7.875%),Q2(7.875%-9.050%),Q3(9.050%-11.200%)and Q4(≥11.200%).Clinical data were collected and measured,including age,height,weight,neck/waist/hip circumferences,blood pressure,comorbidities,duration of DM,and biochemical indicators.Meanwhile,neurotransmitters in the left hippocampus and left brainstem area were detected by proton magnetic resonance spectroscopy.RESULTS The HbA1c level was significantly associated with urinary microalbumin(mALB),triglyceride,low-density lipoprotein cholesterol(LDL-C),homeostasis model assessment of insulin resistance(HOMA-IR),and beta cell function(HOMA-β),N-acetylaspartate/creatine(NAA/Cr),and NAA/choline(NAA/Cho).Spearman correlation analysis showed that mALB,LDL-C,HOMA-IR and NAA/Cr in the left brainstem area were positively correlated with the level of HbA1c(P<0.05),whereas HOMA-βwas negatively correlated with the HbA1c level(P<0.05).Ordered multiple logistic regression analysis showed that NAA/Cho[Odds ratio(OR):1.608,95%confidence interval(95%CI):1.004-2.578,P<0.05],LDL-C(OR:1.627,95%CI:1.119-2.370,P<0.05),and HOMA-IR(OR:1.107,95%CI:1.031-1.188,P<0.01)were independent predictors of poor glycemic control.CONCLUSION The cerebral neurotransmitter concentrations in the left brainstem area in patients with T2DM are closely related to glycemic control,which may be the basis for the changes in cognitive function in diabetic patients.展开更多
Background: The objective of this study was to compare and analyze the variations in clinical indices before and after treatment of type 2 mellitus (T2DM) combined with nonalcoholic fatty liver disease (NAFLD) that we...Background: The objective of this study was to compare and analyze the variations in clinical indices before and after treatment of type 2 mellitus (T2DM) combined with nonalcoholic fatty liver disease (NAFLD) that were treated with glucagon-like peptide 1 receptor agonists (GLP-1RAs). Methods: The electronic medical record system was utilized to search for a total of 16 patients with type 2 diabetes complicated by NAFLD who were hospitalized at the First Affiliated Hospital of Yangtze University from October 2022 to April 2023 and treated with GLP-1RA for the first time. The clinical indices were compared before and after 12 weeks of treatment with GLP-1RA. Results: The liver-spleen CT ratio (L/S), alanine aminotransferase (ALT), gamma-glutamyltransferase (GGT), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) in all patients treated with GLP-1RA after 12 weeks were significantly different (P 0.05). The patients were categorized into two groups based on the types of GLP-1RAs. The changes in L/S, TC, TG, and LDL-C in the long-acting group after treatment were statistically significant (P Conclusions: GLP-1RAs can improve liver function, regulate lipid metabolism, and reduce the severity of fatty liver in patients with T2DM complicated by NAFLD, which demonstrates the importance of clinical applications.展开更多
Healthcare security and privacy breaches are occurring in the United States (US), and increased substantially during the pandemic. This paper reviews the National Institute of Standards and Technology (NIST) publicati...Healthcare security and privacy breaches are occurring in the United States (US), and increased substantially during the pandemic. This paper reviews the National Institute of Standards and Technology (NIST) publication base as an effective solution. The NIST Special Publication 800-66 Revision 1 was an essential standard in US healthcare, which was withdrawn in February 2024 and superseded by SP 800-66 Revision 2. This review investigates the academic papers concerning the application of the NIST SP 800-66 Revision 1 standard in the US healthcare literature. A systematic review method was used in this study to determine current knowledge gaps of the SP 800-66 Revision 1. Some limitations were employed in the search to enforce validity. A total of eleven articles were found eligible for the study. Consequently, this study suggests the necessity for additional academic papers pertaining to SP 800-66 Revision 2 in the US healthcare literature. In turn, it will enhance awareness of safeguarding electronic protected health information (ePHI), help to mitigate potential future risks, and eventually reduce breaches.展开更多
The stereoselective synthesis of 2-chloro-4-substituted-phenyl-5,5-dimethyl-1,3,2-dioxaphosphorinan-2-(thi)ones is described. Only single trans-isomers were obtained when 1-substituted-phenyl-2,2-dimethyl-1,3-propaned...The stereoselective synthesis of 2-chloro-4-substituted-phenyl-5,5-dimethyl-1,3,2-dioxaphosphorinan-2-(thi)ones is described. Only single trans-isomers were obtained when 1-substituted-phenyl-2,2-dimethyl-1,3-propanediols (1) reacted with POCl3. But the stereoselectivity of cyclization reaction between (1) and PSCl3 depended greatly upon the reaction condition. The configurational assignments and the ratio of cis-/trans- diastereoisomers of the products were performed on the basis of (HNMR)-H-1, (PNMR)-P-31 and IR spectra and confirmed by X-ray diffraction analyses.展开更多
基金supported by the Natural Science Foundation of Fujian Province,No.2020J02027the National Natural Science Foundation of China,No.31970461the Foundation of NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate,Fujian Maternity and Child Health Hospital,No.2022-NHP-05(all to WC).
文摘Certain amino acids changes in the human Na^(+)/K^(+)-ATPase pump,ATPase Na^(+)/K^(+)transporting subunit alpha 1(ATP1A1),cause Charcot-Marie-Tooth disease type 2(CMT2)disease and refractory seizures.To develop in vivo models to study the role of Na^(+)/K^(+)-ATPase in these diseases,we modified the Drosophila gene homolog,Atpα,to mimic the human ATP1A1 gene mutations that cause CMT2.Mutations located within the helical linker region of human ATP1A1(I592T,A597T,P600T,and D601F)were simultaneously introduced into endogenous Drosophila Atpαby CRISPR/Cas9-mediated genome editing,generating the Atpα^(TTTF)model.In addition,the same strategy was used to generate the corresponding single point mutations in flies(Atpα^(I571T),Atpα^(A576T),Atpα^(P579T),and Atpα^(D580F)).Moreover,a deletion mutation(Atpα^(mut))that causes premature termination of translation was generated as a positive control.Of these alleles,we found two that could be maintained as homozygotes(Atpα^(I571T)and Atpα^(P579T)).Three alleles(Atpα^(A576T),Atpα^(P579)and Atpα^(D580F))can form heterozygotes with the Atpαmut allele.We found that the Atpαallele carrying these CMT2-associated mutations showed differential phenotypes in Drosophila.Flies heterozygous for Atpα^(TTTF)mutations have motor performance defects,a reduced lifespan,seizures,and an abnormal neuronal morphology.These Drosophila models will provide a new platform for studying the function and regulation of the sodium-potassium pump.
基金financially supported by National Natural Science Foundation of China(81700524)Natural Science Foundation of Fujian Province(2022J01866)from Fujian Provincial Department of Science and Technology+1 种基金Key Project of Fujian University of Traditional Chinese Medicine(X2021019)Collaborative Innovation and Platform Establishment Project of Department of Science and Technology of Guangdong Province(2019A050520003)。
文摘Selenium nanoparticles(SeNPs)have been demonstrated potential for use in diseases associated with oxidative stress.Functionalized SeNPs with lower toxicity and higher biocompatibility could bring better therapeutic activity and clinical application value.Herein,this work was conducted to investigate the protective effect of Pleurotus tuber-regium polysaccharide-protein complex funtionnalized SeNPs(PTR-SeNPs)against acetaminophen(APAP)-induced oxidative injure in HepG2 cells and C57BL/6J mouse liver.Further elucidation of the underlying molecular mechanism,in particular their modulation of Nrf2 signaling pathway was also performed.The results showed that PTR-SeNPs could significantly ameliorate APAP-induced oxidative injury as evidenced by a range of biochemical analysis,histopathological examination and immunoblotting study.PTR-SeNPs could hosphorylate and activate PKCδ,depress Keap1,and increase nuclear accumulation of Nrf2,resulting in upregulation of GCLC,GCLM,HO-1 and NQO-1 expression.Besides,PTR-SeNPs suppressed the biotransformation of APAP to generate intracellular ROS through CYP 2E1 inhibition,restoring the mitochondrial morphology.Furthermore,the protective effect of PTR-SeNPs against APAP induced hepatotoxicity was weakened as Nrf2 was depleted in vivo,indicating the pivotal role of Nrf2 signaling pathway in PTR-SeNPs mediated hepatoprotective efficacy.Being a potential hepatic protectant,PTR-SeNPs could serve as a new source of selenium supplement for health-promoting and biomedical applications.
文摘This editorial summarizes the latest literature on the roles of neuronal PAS domain protein 2 and KN motif/ankyrin repeat domain 1 in type 2 diabetes(T2D).We highlight their involvement inβ-cell dysfunction,explore their potential as therapeutic targets,and discuss the implications for new treatment strategies.We offer valuable insights into relevant gene regulation and cellular mechanisms relevant for the targeted management of T2D.
基金supported by the National Natural Science Foundation of China,No.82104412(to TD)Shaanxi Provincial Key R&D Program,No.2023-YBSF-165(to TD)+1 种基金the Natural Science Foundation of Shaanxi Department of Science and Technology,No.2018JM7022(to FM)Shaanxi Provincial Key Industry Chain Project,No.2021ZDLSF04-11(to PW)。
文摘The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment;however,the molecular mechanisms underlying the formation and function of the blood-brain barrier remain poorly understood.The major facilitator superfamily domain containing 2A has been identified as a key regulator of blood-brain barrier function.It plays a critical role in promoting and maintaining the formation and functional stability of the blood-brain barrier,in addition to the transport of lipids,such as docosahexaenoic acid,across the blood-brain barrier.Furthermore,an increasing number of studies have suggested that major facilitator superfamily domain containing 2A is involved in the molecular mechanisms of blood-brain barrier dysfunction in a variety of neurological diseases;however,little is known regarding the mechanisms by which major facilitator superfamily domain containing 2A affects the blood-brain barrier.This paper provides a comprehensive and systematic review of the close relationship between major facilitator superfamily domain containing 2A proteins and the blood-brain barrier,including their basic structures and functions,cross-linking between major facilitator superfamily domain containing 2A and the blood-brain barrier,and the in-depth studies on lipid transport and the regulation of blood-brain barrier permeability.This comprehensive systematic review contributes to an in-depth understanding of the important role of major facilitator superfamily domain containing 2A proteins in maintaining the structure and function of the blood-brain barrier and the research progress to date.This will not only help to elucidate the pathogenesis of neurological diseases,improve the accuracy of laboratory diagnosis,and optimize clinical treatment strategies,but it may also play an important role in prognostic monitoring.In addition,the effects of major facilitator superfamily domain containing 2A on blood-brain barrier leakage in various diseases and the research progress on cross-blood-brain barrier drug delivery are summarized.This review may contribute to the development of new approaches for the treatment of neurological diseases.
基金support from Region Stockholm,ALF-project(FoUI-960041)Open Access funding is provided by Karolinska Institute(both to IM)。
文摘Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden.Epidemiological data supporting a close relationship between these two aging-related diseases have resulted in the investigation of shared pathophysiological molecular mechanisms.Impaired insulin signaling in the brain has gained increasing attention during the last decade and has been suggested to contribute to the development of Parkinson's disease through the dysregulation of several pathological processes.The contribution of type 2 diabetes mellitus and insulin resistance in neurodegeneration in Parkinson's disease,with emphasis on brain insulin resistance,is extensively discussed in this article and new therapeutic strategies targeting this pathological link are presented and reviewed.
基金Supported by Natural Science Foundation of Heilongjiang Province,No.LH2021H105.
文摘BACKGROUND Diabetes mellitus type 2(T2DM)is formed by defective insulin secretion with the addition of peripheral tissue resistance of insulin action.It has been affecting over 400 million people all over the world.AIM To explore the pathogenesis of T2DM and to develop and implement new prevention and treatment strategies for T2DM.METHODS Receiver operating characteristic(ROC)curve analysis was used to conduct diagnostic markers.The expression level of genes was determined by reverse transcription-PCR as well as Western blot.Cell proliferation assays were performed by cell counting kit-8(CCK-8)tests.At last,T2DM mice underwent Roux-en-Y gastric bypass surgery.RESULTS We found that NPAS2 was significantly up-regulated in isletβcell apoptosis of T2DM.The ROC curve revealed that NPAS2 was capable of accurately diagnosing T2DM.NPAS2 overexpression did increase the level of KANK1.In addition,the CCK-8 test revealed knocking down NPAS2 and KANK1 increased the proliferation of MIN6 cells.At last,we found that gastric bypass may treat type 2 diabetes by down-regulating NPAS2 and KANK1.CONCLUSION This study demonstrated that NPAS2 inducedβcell dysfunction by regulating KANK1 expression in type 2 diabetes,and it may be an underlying therapy target of T2DM.
基金Supported by the Natural Science Foundation for the Higher Education Institutions of Anhui Province of China,No.2023AH050561,No.2022AH051143,No.KJ2021A0266,and No.KJ2021A1228School-level offline courses,No.2021xjkc13.
文摘BACKGROUND The association of single nucleotide polymorphism of KCNQ1 gene rs2237895 with type 2 diabetes mellitus(T2DM)is currently controversial.It is unknown whether this association can be gene realized across different populations.AIM To determine the association of KCNQ1 rs2237895 with T2DM and provide reliable evidence for genetic susceptibility to T2DM.METHODS We searched PubMed,Embase,Web of Science,Cochrane Library,Medline,Baidu Academic,China National Knowledge Infrastructure,China Biomedical Literature Database,and Wanfang to investigate the association between KCNQ1 gene rs2237895 and the risk of T2DM up to January 12,2022.Review Manager 5.4 was used to analyze the association of the KCNQ1 gene rs2237895 polymorphism with T2DM and to evaluate the publication bias of the selected literature.RESULTS Twelve case–control studies(including 11273 cases and 11654 controls)met our inclusion criteria.In the full population,allelic model[odds ratio(OR):1.19;95%confidence interval(95%CI):1.09–1.29;P<0.0001],recessive model(OR:1.20;95%CI:1.11–1.29;P<0.0001),dominant model(OR:1.27.95%CI:1.14–1.42;P<0.0001),and codominant model(OR:1.36;95%CI:1.15–1.60;P=0.0003)(OR:1.22;95%CI:1.10–1.36;P=0.0002)indicated that the KCNQ1 gene rs2237895 polymorphism was significantly correlated with susceptibility to T2DM.In stratified analysis,this association was confirmed in Asian populations:allelic model(OR:1.25;95%CI:1.13–1.37;P<0.0001),recessive model(OR:1.29;95%CI:1.11–1.49;P=0.0007),dominant model(OR:1.35;95%CI:1.20–1.52;P<0.0001),codominant model(OR:1.49;95%CI:1.22–1.81;P<0.0001)(OR:1.26;95%CI:1.16–1.36;P<0.0001).In non-Asian populations,this association was not significant:Allelic model(OR:1.06,95%CI:0.98–1.14;P=0.12),recessive model(OR:1.04;95%CI:0.75–1.42;P=0.83),dominant model(OR:1.06;95%CI:0.98–1.15;P=0.15),codominant model(OR:1.08;95%CI:0.82–1.42;P=0.60.OR:1.15;95%CI:0.95–1.39;P=0.14).CONCLUSION KCNQ1 gene rs2237895 was significantly associated with susceptibility to T2DM in an Asian population.Carriers of the C allele had a higher risk of T2DM.This association was not significant in non-Asian populations.
基金supported by The Beijing Natural Science Foundation[No.7202216]the National Natural Science Foundation of China[No.81970698 and No.81970708].
文摘Objective Recent studies have indicated potential anti-inflammatory effects of glucagon-like peptide-1 receptor agonists(GLP-1RAs)on asthma,which is often comorbid with type 2 diabetes mellitus(T2DM)and obesity.Therefore,we conducted a meta-analysis to assess the association between the administration of glucagon-like peptide-1(GLP-1)receptor-based agonists and the incidence of asthma in patients with T2DM and/or obesity.Methods PubMed,Web of Science,Embase,the Cochrane Central Register of Controlled Trials,and Clinicaltrial.gov were systematically searched from inception to July 2023.Randomized controlled trials(RCTs)of GLP-1 receptor-based agonists(GLP-1RA,GLP-1 based dual and triple receptor agonist)with reports of asthma events were included.Outcomes were computed as risk ratios(RR)using a fixedeffects model.Results Overall,39 RCTs with a total of 85,755 participants were included.Compared to non-GLP-1 receptor-based agonist users,a trend of reduced risk of asthma was observed in patients with T2DM or obesity using GLP-1 receptor-based agonist treatments,although the difference was not statistically significant[RR=0.91,95%confidence interval(CI):0.68 to 1.24].Further Subgroup analyses indicated that the use of light-molecular-weight GLP-1RAs might be associated with a reduced the risk of asthma when compared with non-users(RR=0.65,95%CI:0.43 to 0.99,P=0.043).We also performed sensitivity analyses for participant characteristics,study design,drug structure,duration of action,and drug subtypes.However,no significant associations were observed.Conclusion Compared with non-users,a modest reduction in the incidence of asthma was observed in patients with T2DM or obesity using GLP-1 receptor-based agonist treatments.Further investigations are warranted to assess the association between GLP-1 receptor-based agonists and the risk of asthma.
基金Supported by China Scholarship Council,No.202006920018Key Talent Program for Medical Applications of Nuclear Technology,No.XKTJ-HRC2021007+2 种基金the Second Affiliated Hospital of Soochow University,No.SDFEYBS1815 and No.SDFEYBS2008National Natural Science Foundation of China,No.82170831The Jiangsu Innovation&Career Fund for PhD 2019.
文摘BACKGROUND Glucagon-like peptide-1 receptor agonists(GLP-1RA)and sodium-glucose co-transporter-2 inhibitors(SGLT-2I)are associated with significant cardiovascular benefit in type 2 diabetes(T2D).However,GLP-1RA or SGLT-2I alone may not improve some cardiovascular outcomes in patients with prior cardiovascular co-morbidities.AIM To explore whether combining GLP-1RA and SGLT-2I can achieve additional benefit in preventing cardiovascular diseases in T2D.METHODS The systematic review was conducted according to PRISMA recommendations.The protocol was registered on PROSPERO(ID:42022385007).A total of 107049 participants from eligible cardiovascular outcomes trials of GLP-1RA and SGLT-2I were included in network meta-regressions to estimate cardiovascular benefit of the combination treatment.Effect modification of prior myocardial infarction(MI)and heart failure(HF)was also explored to provide clinical insight as to when the INTRODUCTION The macro-and micro-vascular benefits of glucagon-like peptide-1 receptor agonists(GLP-1RA)and sodium-glucose co-transporter-2 inhibitors(SGLT-2I)are independent of their glucose-lowering effects[1].In patients with type 2 diabetes(T2D),the major cardiovascular outcome trials(CVOT)showed that dipeptidyl peptidase-4 inhibitors(DPP-4I)did not improve cardiovascular outcomes[2],whereas cardiovascular benefit of GLP-1RA or SGLT-2I was significant[3,4].Further subgroup analyses indicated that the background cardiovascular risk should be considered when examining the cardiovascular outcomes of these newer glucose-lowering medications.For instance,prevention of major adverse cardiovascular events(MACE)was only seen in those patients with baseline atherosclerotic cardiovascular disease[3,4].Moreover,a series of CVOT conducted in patients with heart failure(HF)have demonstrated that(compared with placebo)SGLT-2I significantly reduced risk of hospitalization for HF or cardiovascular death,irrespective of their history of T2D[5-8].However,similar cardiovascular benefits were not observed in those with myocardial infarction(MI)[9,10].Cardiovascular co-morbidities are not only approximately twice as common but are also associated with dispropor-tionately worse cardiovascular outcomes in patients with T2D,compared to the general population[11].Therefore,it is of clinical importance to investigate whether the combination treatment of GLP-1RA and SGLT-2I could achieve greater cardiovascular benefit,particularly when considering patients with cardiovascular co-morbidities who may not gain sufficient cardiovascular protection from the monotherapies.This systematic review with multiple network meta-regressions was mainly aimed to explore whether combining GLP-1RA and SGLT-2I can provide additional cardiovascular benefit in T2D.Cardiovascular outcomes of these newer antidiabetic medications were also estimated under effect modification of prior cardiovascular diseases.This was to provide clinical insight as to when the combination treatment might be prioritized.
文摘BACKGROUND Gastrointestinal stromal tumors(GISTs)are typical gastrointestinal tract neoplasms.Imatinib is the first-line therapy for GIST patients.Drug resistance limits the long-term effectiveness of imatinib.The regulatory effect of insulin-like growth factor 2(IGF2)has been confirmed in various cancers and is related to resistance to chemotherapy and a worse prognosis.AIM To further investigate the mechanism of IGF2 specific to GISTs.METHODS IGF2 was screened and analyzed using Gene Expression Omnibus(GEO:GSE225819)data.After IGF2 knockdown or overexpression by transfection,the phenotypes(proliferation,migration,invasion,apoptosis)of GIST cells were characterized by cell counting kit 8,Transwell,and flow cytometry assays.We used western blotting to evaluate pathway-associated and epithelial-mesenchymal transition(EMT)-associated proteins.We injected transfected cells into nude mice to establish a tumor xenograft model and observed the occurrence and metastasis of GIST.RESULTS Data from the GEO indicated that IGF2 expression is high in GISTs,associated with liver metastasis,and closely related to drug resistance.GIST cells with high expression of IGF2 had increased proliferation and migration,invasiveness and EMT.Knockdown of IGF2 significantly inhibited those activities.In addition,OEIGF2 promoted GIST metastasis in vivo in nude mice.IGF2 activated IGF1R signaling in GIST cells,and IGF2/IGF1R-mediated glycolysis was required for GIST with liver metastasis.GIST cells with IGF2 knockdown were sensitive to imatinib treatment when IGF2 overexpression significantly raised imatinib resistance.Moreover,2-deoxy-D-glucose(a glycolysis inhibitor)treatment reversed IGF2 overexpressionmediated imatinib resistance in GISTs.CONCLUSION IGF2 targeting of IGF1R signaling inhibited metastasis and decreased imatinib resistance by driving glycolysis in GISTs.
文摘This editorial is stimulated by the article by Alqifari et al published in the World Journal of Diabetes(2024).Alqifari et al focus on practical advice for the clinical use of glucagon-like-peptide-1(GLP-1)receptor agonists(GLP-1RAs)in the management of type 2 diabetes and this editorial provides complementary information.We initially give a brief historical perspective of the development of GLP-1RAs stimulated by recognition of the‘incretin effect’,the substantially greater insulin increase to enteral when compared to euglycaemic intravenous glucose,and the identification of the incretin hormones,GIP and GLP-1.In addition to stimulating insulin,GLP-1 reduces postprandial glucose levels by slowing gastric emptying.GLP-1RAs were developed because native GLP-1 has a very short plasma half-life.The majority of current GLP-1RAs are administered by subcutaneous injection once a week.They are potent in glucose lowering without leading to hypoglycaemia,stimulate weight loss in obese individuals and lead to cardiovascular and renal protection.The landscape in relation to GLP-1RAs is broadening rapidly,with different formulations and their combination with other peptides to facilitate both glucose lowering and weight loss.There is a need for more information relating to the effects of GLP-1RAs to induce gastrointestinal symptoms and slow gastric emptying which is likely to allow their use to become more effective and personalised.
基金Supported by the National Natural Science Foundation of China,No.81471094 and No.82202743.
文摘BACKGROUND Recently,type 2 diabetic osteoporosis(T2DOP)has become a research hotspot for the complications of diabetes,but the specific mechanism of its occurrence and development remains unknown.Ferroptosis caused by iron overload is con-sidered an important cause of T2DOP.Polycytosine RNA-binding protein 1(PCBP1),an iron ion chaperone,is considered a protector of ferroptosis.AIM To investigate the existence of ferroptosis and specific role of PCBP1 in the development of type 2 diabetes.METHODS A cell counting kit-8 assay was used to detect changes in osteoblast viability under high glucose(HG)and/or ferroptosis inhibitors at different concentrations and times.Transmission electron microscopy was used to examine the morpho-logical changes in the mitochondria of osteoblasts under HG,and western blotting was used to detect the expression levels of PCBP1,ferritin,and the ferroptosis-related protein glutathione peroxidase 4(GPX4).A lentivirus silenced and overex-pressed PCBP1.Western blotting was used to detect the expression levels of the osteoblast functional proteins osteoprotegerin(OPG)and osteocalcin(OCN),whereas flow cytometry was used to detect changes in reactive oxygen species(ROS)levels in each group.RESULTS Under HG,the viability of osteoblasts was considerably decreased,the number of mitochondria undergoing atrophy was considerably increased,PCBP1 and ferritin expression levels were increased,and GPX4 expression was decreased.Western blotting results demonstrated that infection with lentivirus overexpressing PCBP1,increased the expression levels of ferritin,GPX4,OPG,and OCN,compared with the HG group.Flow cytometry results showed a reduction in ROS,and an opposite result was obtained after silencing PCBP1.CONCLUSION PCBP1 may protect osteoblasts and reduce the harm caused by ferroptosis by promoting ferritin expression under a HG environment.Moreover,PCBP1 may be a potential therapeutic target for T2DOP.
基金Supported by the Academic Leaders Training Program of Pudong Health Bureau of Shanghai,No.PWRd2023-03Clinical Research Fund of Shanghai Municipal Commission of Health,No.202040136+1 种基金National Natural Science Foundation of China,No.82070842Jiangxi Health Commission Science and Technology Plan Project,No.202212838 and No.202212852.
文摘BACKGROUND Cognitive dysfunction is the main manifestation of central neuropathy.Although cognitive impairments tend to be overlooked in patients with diabetes mellitus(DM),there is a growing body of evidence linking DM to cognitive dysfunction.Hyperglycemia is closely related to neurological abnormalities,while often disregarded in clinical practice.Changes in cerebral neurotransmitter levels are associated with a variety of neurological abnormalities and may be closely related to blood glucose control in patients with type 2 DM(T2DM).AIM To evaluate the concentrations of cerebral neurotransmitters in T2DM patients exhibiting different hemoglobin A1c(HbA1c)levels.METHODS A total of 130 T2DM patients were enrolled at the Department of Endocrinology of Shanghai East Hospital.The participants were divided into four groups according to their HbA1c levels using the interquartile method,namely Q1(<7.875%),Q2(7.875%-9.050%),Q3(9.050%-11.200%)and Q4(≥11.200%).Clinical data were collected and measured,including age,height,weight,neck/waist/hip circumferences,blood pressure,comorbidities,duration of DM,and biochemical indicators.Meanwhile,neurotransmitters in the left hippocampus and left brainstem area were detected by proton magnetic resonance spectroscopy.RESULTS The HbA1c level was significantly associated with urinary microalbumin(mALB),triglyceride,low-density lipoprotein cholesterol(LDL-C),homeostasis model assessment of insulin resistance(HOMA-IR),and beta cell function(HOMA-β),N-acetylaspartate/creatine(NAA/Cr),and NAA/choline(NAA/Cho).Spearman correlation analysis showed that mALB,LDL-C,HOMA-IR and NAA/Cr in the left brainstem area were positively correlated with the level of HbA1c(P<0.05),whereas HOMA-βwas negatively correlated with the HbA1c level(P<0.05).Ordered multiple logistic regression analysis showed that NAA/Cho[Odds ratio(OR):1.608,95%confidence interval(95%CI):1.004-2.578,P<0.05],LDL-C(OR:1.627,95%CI:1.119-2.370,P<0.05),and HOMA-IR(OR:1.107,95%CI:1.031-1.188,P<0.01)were independent predictors of poor glycemic control.CONCLUSION The cerebral neurotransmitter concentrations in the left brainstem area in patients with T2DM are closely related to glycemic control,which may be the basis for the changes in cognitive function in diabetic patients.
文摘Background: The objective of this study was to compare and analyze the variations in clinical indices before and after treatment of type 2 mellitus (T2DM) combined with nonalcoholic fatty liver disease (NAFLD) that were treated with glucagon-like peptide 1 receptor agonists (GLP-1RAs). Methods: The electronic medical record system was utilized to search for a total of 16 patients with type 2 diabetes complicated by NAFLD who were hospitalized at the First Affiliated Hospital of Yangtze University from October 2022 to April 2023 and treated with GLP-1RA for the first time. The clinical indices were compared before and after 12 weeks of treatment with GLP-1RA. Results: The liver-spleen CT ratio (L/S), alanine aminotransferase (ALT), gamma-glutamyltransferase (GGT), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) in all patients treated with GLP-1RA after 12 weeks were significantly different (P 0.05). The patients were categorized into two groups based on the types of GLP-1RAs. The changes in L/S, TC, TG, and LDL-C in the long-acting group after treatment were statistically significant (P Conclusions: GLP-1RAs can improve liver function, regulate lipid metabolism, and reduce the severity of fatty liver in patients with T2DM complicated by NAFLD, which demonstrates the importance of clinical applications.
文摘Healthcare security and privacy breaches are occurring in the United States (US), and increased substantially during the pandemic. This paper reviews the National Institute of Standards and Technology (NIST) publication base as an effective solution. The NIST Special Publication 800-66 Revision 1 was an essential standard in US healthcare, which was withdrawn in February 2024 and superseded by SP 800-66 Revision 2. This review investigates the academic papers concerning the application of the NIST SP 800-66 Revision 1 standard in the US healthcare literature. A systematic review method was used in this study to determine current knowledge gaps of the SP 800-66 Revision 1. Some limitations were employed in the search to enforce validity. A total of eleven articles were found eligible for the study. Consequently, this study suggests the necessity for additional academic papers pertaining to SP 800-66 Revision 2 in the US healthcare literature. In turn, it will enhance awareness of safeguarding electronic protected health information (ePHI), help to mitigate potential future risks, and eventually reduce breaches.
文摘The stereoselective synthesis of 2-chloro-4-substituted-phenyl-5,5-dimethyl-1,3,2-dioxaphosphorinan-2-(thi)ones is described. Only single trans-isomers were obtained when 1-substituted-phenyl-2,2-dimethyl-1,3-propanediols (1) reacted with POCl3. But the stereoselectivity of cyclization reaction between (1) and PSCl3 depended greatly upon the reaction condition. The configurational assignments and the ratio of cis-/trans- diastereoisomers of the products were performed on the basis of (HNMR)-H-1, (PNMR)-P-31 and IR spectra and confirmed by X-ray diffraction analyses.