This paper reports that 1-dodecylamine hydrobromide (1 C12H25NH3.Br)(s) has been synthesized using the liquid phase reaction method. The lattice potential energy of the compound 1-C12H25NH3.Br and the ionic vol- u...This paper reports that 1-dodecylamine hydrobromide (1 C12H25NH3.Br)(s) has been synthesized using the liquid phase reaction method. The lattice potential energy of the compound 1-C12H25NH3.Br and the ionic vol- ume and radius of the 1-C12H25NH3+ cation are obtained from the crystallographic data and other auxiliary ther- modynamic data. The constant-volume energy of combustion of 1 C12H25NH3.Br(s) is measured to be AcUo(1 C12H25NH3.Br, s) = (7369.03-4-3.28) kJ.mo1-1 by means of an RBC-II precision rotating-bomb combustion calorime- ter at T=(298.15~0.001) K. The standard molar enthalpy of combustion of the compound is derived to be △cHo(1- C12H25NH3.Br, s)=- (7384.52±3.28) kJ.mo1-1 from the constant-volume energy of combustion. The standard molar enthalpy of formation of the compound is calculated to be △fHo(1-C12H25NH3.Br, s)=-(1317.86~3.67) kJ.mo1-1 from the standard molar enthalpy of combustion of the title compound and other auxiliary thermodynamic quantities through a thermochemical cycle.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 20673050 and 20973089)
文摘This paper reports that 1-dodecylamine hydrobromide (1 C12H25NH3.Br)(s) has been synthesized using the liquid phase reaction method. The lattice potential energy of the compound 1-C12H25NH3.Br and the ionic vol- ume and radius of the 1-C12H25NH3+ cation are obtained from the crystallographic data and other auxiliary ther- modynamic data. The constant-volume energy of combustion of 1 C12H25NH3.Br(s) is measured to be AcUo(1 C12H25NH3.Br, s) = (7369.03-4-3.28) kJ.mo1-1 by means of an RBC-II precision rotating-bomb combustion calorime- ter at T=(298.15~0.001) K. The standard molar enthalpy of combustion of the compound is derived to be △cHo(1- C12H25NH3.Br, s)=- (7384.52±3.28) kJ.mo1-1 from the constant-volume energy of combustion. The standard molar enthalpy of formation of the compound is calculated to be △fHo(1-C12H25NH3.Br, s)=-(1317.86~3.67) kJ.mo1-1 from the standard molar enthalpy of combustion of the title compound and other auxiliary thermodynamic quantities through a thermochemical cycle.