The effect of ammonia on the catalytic performance for 1-methylnaphthalene(1-MN) selective hydrogenation saturation was studied with Co-Mo/γ-Al_2O_3, Ni-W/γ-Al_2O_3, Ni-Mo/γ-Al_2O_3, and Ni-Mo-W/γ-Al_2O_3 catalyst...The effect of ammonia on the catalytic performance for 1-methylnaphthalene(1-MN) selective hydrogenation saturation was studied with Co-Mo/γ-Al_2O_3, Ni-W/γ-Al_2O_3, Ni-Mo/γ-Al_2O_3, and Ni-Mo-W/γ-Al_2O_3 catalysts. The results indicated that Ni-Mo-W/γ-Al_2O_3 catalyst exhibited the best performance for saturation of 1-MN. The introduction of NH3 remarkably inhibited the hydrogenation of 1-MN in the dynamic control area, but it had no effect in the thermodynamic control area. Besides, the mono-aromatics selectivity on the Ni-Mo-W and Ni-Mo catalysts was enhanced. However, it had little effect on the Ni-W and Co-Mo catalysts.展开更多
The support γ-Al_2O_3 was treated with 1-methylnaphthalene as the model reactant by respectively using the chemical static adsorption method and the accelerated coking method to study the coking sites of γ-Al_2O_3 s...The support γ-Al_2O_3 was treated with 1-methylnaphthalene as the model reactant by respectively using the chemical static adsorption method and the accelerated coking method to study the coking sites of γ-Al_2O_3 surface. The carbon species formed on γ-Al_2O_3 surface were analyzed by CAT-CS, TG-MS, IR-OH, and Py-IR techniques. The results of characterization by CAT-CS and TG-MS techniques indicated that the carbon species formed during the chemical static adsorption process is mainly composed of the reversibly adsorbed coke precursors with a lowly-condensed state, while that formed after the accelerated coking process is probably related with the irreversibly adsorbed coke deposits with a highlycondensed state. The results of characterization by IR-OH and Py-IR techniques further implied that the formation of the two kinds of carbon species, i.e., coke precursors and coke deposits, are closely related with the basic hydroxyl groups and the strong Lewis acid sites on γ-Al_2O_3 surface. The results lead to a deep insight into the coking mechanism on the alumina surface.展开更多
Understanding chemical transformations of contaminants and the resulting products is extremely important in devising proper monitoring methods for such contaminants and in assessing potential human exposure to the tra...Understanding chemical transformations of contaminants and the resulting products is extremely important in devising proper monitoring methods for such contaminants and in assessing potential human exposure to the transformation products in the environment. Ultraviolet (UV) light from the sun can induce various photochemical transformations of contaminants in the environment. Alkylnaphthalenes are light-molecular-weight polycyclic aromatic hydrocarbons (PAHs) which are one of the most widespread organic pollutants present in ambient air as a result of a variety of incomplete combustion sources. In this study, 1-methylnapthalene,a typical example of an alkylnaphthalene, was subjected to UV irradiation to investigate its transformation in the presence and absence of air. Twenty-one products were detected in the reaction mixtures. Some photo-oxidation products were identified, including both ring-opened and ring-retained oxygenated compounds, such as 1-naphthaldehyde, 1-naphthoic acid, 1-naphthalenemethanol and phthalic anhydride. Although dimeric products were observed in the presence of air, more were found in the presence of helium or argon gas, indicating a different photo-oxidation pathway from those commonly observed in other media, such as water. Under just 48 hours of exposure to the UV light in the presence of air, three major products were formed with a production yield of about 10% each. Compared to 1-methylnapthalene, the UV induced transformation products observed in this study are more volatile, acidic, water soluble or toxic. The formation of these products may significantly change our understanding of the risks assessed solely from the parent compound in contaminants research and supports the inclusion of airborne transformations of the parent compound in risk assessment.展开更多
文摘The effect of ammonia on the catalytic performance for 1-methylnaphthalene(1-MN) selective hydrogenation saturation was studied with Co-Mo/γ-Al_2O_3, Ni-W/γ-Al_2O_3, Ni-Mo/γ-Al_2O_3, and Ni-Mo-W/γ-Al_2O_3 catalysts. The results indicated that Ni-Mo-W/γ-Al_2O_3 catalyst exhibited the best performance for saturation of 1-MN. The introduction of NH3 remarkably inhibited the hydrogenation of 1-MN in the dynamic control area, but it had no effect in the thermodynamic control area. Besides, the mono-aromatics selectivity on the Ni-Mo-W and Ni-Mo catalysts was enhanced. However, it had little effect on the Ni-W and Co-Mo catalysts.
基金support from the National Key Basic Research Program of China (Grant 2017YFB0306603)
文摘The support γ-Al_2O_3 was treated with 1-methylnaphthalene as the model reactant by respectively using the chemical static adsorption method and the accelerated coking method to study the coking sites of γ-Al_2O_3 surface. The carbon species formed on γ-Al_2O_3 surface were analyzed by CAT-CS, TG-MS, IR-OH, and Py-IR techniques. The results of characterization by CAT-CS and TG-MS techniques indicated that the carbon species formed during the chemical static adsorption process is mainly composed of the reversibly adsorbed coke precursors with a lowly-condensed state, while that formed after the accelerated coking process is probably related with the irreversibly adsorbed coke deposits with a highlycondensed state. The results of characterization by IR-OH and Py-IR techniques further implied that the formation of the two kinds of carbon species, i.e., coke precursors and coke deposits, are closely related with the basic hydroxyl groups and the strong Lewis acid sites on γ-Al_2O_3 surface. The results lead to a deep insight into the coking mechanism on the alumina surface.
文摘Understanding chemical transformations of contaminants and the resulting products is extremely important in devising proper monitoring methods for such contaminants and in assessing potential human exposure to the transformation products in the environment. Ultraviolet (UV) light from the sun can induce various photochemical transformations of contaminants in the environment. Alkylnaphthalenes are light-molecular-weight polycyclic aromatic hydrocarbons (PAHs) which are one of the most widespread organic pollutants present in ambient air as a result of a variety of incomplete combustion sources. In this study, 1-methylnapthalene,a typical example of an alkylnaphthalene, was subjected to UV irradiation to investigate its transformation in the presence and absence of air. Twenty-one products were detected in the reaction mixtures. Some photo-oxidation products were identified, including both ring-opened and ring-retained oxygenated compounds, such as 1-naphthaldehyde, 1-naphthoic acid, 1-naphthalenemethanol and phthalic anhydride. Although dimeric products were observed in the presence of air, more were found in the presence of helium or argon gas, indicating a different photo-oxidation pathway from those commonly observed in other media, such as water. Under just 48 hours of exposure to the UV light in the presence of air, three major products were formed with a production yield of about 10% each. Compared to 1-methylnapthalene, the UV induced transformation products observed in this study are more volatile, acidic, water soluble or toxic. The formation of these products may significantly change our understanding of the risks assessed solely from the parent compound in contaminants research and supports the inclusion of airborne transformations of the parent compound in risk assessment.