采用碳酸盐共沉淀法和高温烧结工艺将一定量的Mo^(6+)掺杂到Li_(1.20)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)正极材料中。利用XRD、SEM、EDS和恒流测试仪研究Mo^(6+)掺杂对Li_(1.20)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)正极材料的晶体结构、...采用碳酸盐共沉淀法和高温烧结工艺将一定量的Mo^(6+)掺杂到Li_(1.20)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)正极材料中。利用XRD、SEM、EDS和恒流测试仪研究Mo^(6+)掺杂对Li_(1.20)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)正极材料的晶体结构、微观形貌和电化学性能的影响。结果显示,Li_(1.20)Mn_(0.52)Ni_(0.13)Co_(0.13)Mo_(0.02)O_(2)表现出更低的阳离子混排和优异的电化学性能。经过Mo^(6+)掺杂后的正极,由于Li^(+)高速的迁移速率,使得首次不可逆容量损失降低,并展现出更好的高倍率性能和优异的循环稳定性。在0.5C倍率下循环100周后,Li_(1.20)Mn_(0.52)Ni_(0.13)Co_(0.13)Mo_(0.02)O_(2)的容量保持率达到92.2%,远远大于Li_(1.20)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)的87.5%。另外,当放电倍率增大到5C时,Li_(1.2)0Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)的放电比容量要比Li_(1.20)Mn_(0.52)Ni_(0.13)Co_(0.13)Mo_(0.02)O_(2)低21.0 m A·h/g。因此,采用Mo^(6+)掺杂改性Li_(1.2)0Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)正极材料,可以有效提高锂电池的循环保持率和高倍率放电性能。展开更多
文摘采用碳酸盐共沉淀法和高温烧结工艺将一定量的Mo^(6+)掺杂到Li_(1.20)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)正极材料中。利用XRD、SEM、EDS和恒流测试仪研究Mo^(6+)掺杂对Li_(1.20)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)正极材料的晶体结构、微观形貌和电化学性能的影响。结果显示,Li_(1.20)Mn_(0.52)Ni_(0.13)Co_(0.13)Mo_(0.02)O_(2)表现出更低的阳离子混排和优异的电化学性能。经过Mo^(6+)掺杂后的正极,由于Li^(+)高速的迁移速率,使得首次不可逆容量损失降低,并展现出更好的高倍率性能和优异的循环稳定性。在0.5C倍率下循环100周后,Li_(1.20)Mn_(0.52)Ni_(0.13)Co_(0.13)Mo_(0.02)O_(2)的容量保持率达到92.2%,远远大于Li_(1.20)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)的87.5%。另外,当放电倍率增大到5C时,Li_(1.2)0Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)的放电比容量要比Li_(1.20)Mn_(0.52)Ni_(0.13)Co_(0.13)Mo_(0.02)O_(2)低21.0 m A·h/g。因此,采用Mo^(6+)掺杂改性Li_(1.2)0Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)正极材料,可以有效提高锂电池的循环保持率和高倍率放电性能。