This study employs a linear inversion algorithm to retrieve volume emission rates(VERs)of molecular O_(2) nightglow at 1.27μm,utilizing Limb-Viewed spectra obtained from the SCanning Imaging Absorption spectroMeter f...This study employs a linear inversion algorithm to retrieve volume emission rates(VERs)of molecular O_(2) nightglow at 1.27μm,utilizing Limb-Viewed spectra obtained from the SCanning Imaging Absorption spectroMeter for Atmospheric for CHartographY(SCIAMACHY)payload on board the Envisat satellite.The retrieved results are compared with VERs data from the SABER payload on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics(TIMED)satellite,exhibiting consistency.This will help to facilitate accurate revelation of spatial distribution and periodic variation in O_(2) nightglow.VERs are extracted monthly within the altitude range of 75-110 km from 2002 to 2012,yielding a climatology of spatial and temporal distributions.The meridional structure exhibits two maxima,at the equator and at 45°N.Between August and October,the VERs exhibit a meridional bimodal structure,with the weaker one above the equator and the stronger one above 45°N.In April,the VERs reach their annual maximum.Additionally,harmonic analysis reveals significant temporal variations on different scales.The emission shows characteristics of annual and semi-annual variation,and a non-linear long-term trend associated with solar cycle activity.展开更多
China’s Mars exploration mission has stimulated tremendous interest in planetary science exploration recently.To propose potential scientific research projects,this study presents a concept simulation for the measure...China’s Mars exploration mission has stimulated tremendous interest in planetary science exploration recently.To propose potential scientific research projects,this study presents a concept simulation for the measurement of Martian atmospheric winds using the Doppler Michelson interferometry technique.The simulation is based on the satellite instrument initially designed for the Dynamic Atmosphere Mars Observer(DYNAMO)project to measure vertical profiles of winds from the 1.27μm airglow observations in the Martian atmosphere.A comprehensive DYNAMO measurement simulation forward model based on an orbit submodel,an atmospheric background field submodel,and an instrument submodel is developed using the Michelson equation.The simulated interferogram signal over the field of view(FOV)calculated by the forward model is associated with the filter transmittance function,column emission rate of airglow,wind velocity,temperature,and the Michelson phase.The agreement between the derived atmospheric signals from the simulated interferogram without altitude inversion and the input parameters used to initiate the forward model confirms the validity of the forward model.展开更多
基金supported by the National Key R&D program of China(2021YFE0110200)the Project of Stable Support for Youth Team in Basic Research Field,CAS(YSBR-018)+3 种基金the National Natural Science Foundation of China(41831073,42174196 and 42174212)the Chinese Meridian Projectthe Specialized Research Fund for State Key Laboratoriesthe International Partnership Program of Chinese Academy of Sciences.Grant No.183311KYSB20200003.
文摘This study employs a linear inversion algorithm to retrieve volume emission rates(VERs)of molecular O_(2) nightglow at 1.27μm,utilizing Limb-Viewed spectra obtained from the SCanning Imaging Absorption spectroMeter for Atmospheric for CHartographY(SCIAMACHY)payload on board the Envisat satellite.The retrieved results are compared with VERs data from the SABER payload on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics(TIMED)satellite,exhibiting consistency.This will help to facilitate accurate revelation of spatial distribution and periodic variation in O_(2) nightglow.VERs are extracted monthly within the altitude range of 75-110 km from 2002 to 2012,yielding a climatology of spatial and temporal distributions.The meridional structure exhibits two maxima,at the equator and at 45°N.Between August and October,the VERs exhibit a meridional bimodal structure,with the weaker one above the equator and the stronger one above 45°N.In April,the VERs reach their annual maximum.Additionally,harmonic analysis reveals significant temporal variations on different scales.The emission shows characteristics of annual and semi-annual variation,and a non-linear long-term trend associated with solar cycle activity.
基金This work was supported by the Pre-Research Project on Civil Aerospace Technologies Funded by China’s National Space Administration(Grant No.D020105)the National Natural Science Foundation of China(Grant Nos.41904142,41774164,42030202,41822403,41774165,41774161)+1 种基金the B-type Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB41000000)Youth Innovation Promotion Association CAS.W.Ward acknowledges support from the Canadian Space Agency and the National Science and Engineering Council(NSERC)of Canada.
文摘China’s Mars exploration mission has stimulated tremendous interest in planetary science exploration recently.To propose potential scientific research projects,this study presents a concept simulation for the measurement of Martian atmospheric winds using the Doppler Michelson interferometry technique.The simulation is based on the satellite instrument initially designed for the Dynamic Atmosphere Mars Observer(DYNAMO)project to measure vertical profiles of winds from the 1.27μm airglow observations in the Martian atmosphere.A comprehensive DYNAMO measurement simulation forward model based on an orbit submodel,an atmospheric background field submodel,and an instrument submodel is developed using the Michelson equation.The simulated interferogram signal over the field of view(FOV)calculated by the forward model is associated with the filter transmittance function,column emission rate of airglow,wind velocity,temperature,and the Michelson phase.The agreement between the derived atmospheric signals from the simulated interferogram without altitude inversion and the input parameters used to initiate the forward model confirms the validity of the forward model.