Based on the discussion of relationships between thinning and wind damage, and published information, a method for estimating risk ratios of wind damage was developed. Estimations of risk-ratio for Pinus thunbergii tr...Based on the discussion of relationships between thinning and wind damage, and published information, a method for estimating risk ratios of wind damage was developed. Estimations of risk-ratio for Pinus thunbergii trees and stands were de-duced from stem bending theory and coefficients characterizing wind profile, distribution of branches and optical stratification po-rosity. The results showed that if the value of constant b in the branch distribution-model equals the attenuation coefficient s in the wind profile model for a single tree crown, then the parameter H/D1.33 (height over stem diameter cubed) can be used to compare and evaluate the risk-ratio of wind damage for individual trees. The same method can be applied to stands using the coefficient of wind profile in a stand, i.e. attenuation coefficient , the coefficient from distributions of optical stratification porosity, i.e. extinction coefficient , and the parameter D1.33. The application of parameter H/D1.33 and the process of determining risk ra-tios of wind damage for stands were also given in the paper.展开更多
基金This study was supported by Innovation Research Project of Chinese Academy of Sciences and the Ministry of Culture and Education Japanese Government.
文摘Based on the discussion of relationships between thinning and wind damage, and published information, a method for estimating risk ratios of wind damage was developed. Estimations of risk-ratio for Pinus thunbergii trees and stands were de-duced from stem bending theory and coefficients characterizing wind profile, distribution of branches and optical stratification po-rosity. The results showed that if the value of constant b in the branch distribution-model equals the attenuation coefficient s in the wind profile model for a single tree crown, then the parameter H/D1.33 (height over stem diameter cubed) can be used to compare and evaluate the risk-ratio of wind damage for individual trees. The same method can be applied to stands using the coefficient of wind profile in a stand, i.e. attenuation coefficient , the coefficient from distributions of optical stratification porosity, i.e. extinction coefficient , and the parameter D1.33. The application of parameter H/D1.33 and the process of determining risk ra-tios of wind damage for stands were also given in the paper.