In recent years, the booming band- width demands of dedicated mobile services have driven the rapid development of optical transport networks (OTNs). Through the in- novative use of emerging coherent optical communi...In recent years, the booming band- width demands of dedicated mobile services have driven the rapid development of optical transport networks (OTNs). Through the in- novative use of emerging coherent optical communication technology and the advance- ment of microelectronics technology, the new-generation 100Gb/s transport technology offers a high line rate and unprecedented re- silience to optical transmission impairments. This paper overviews the bandwidth demands of China Mobile driven by the upcoming roll- out of Time Division-Long Term Evolution (TD-LTE) and presents the 100Gb/s trials at China Mobile that were used to verify the performance of a lOOGb/s system. China Mo- bile's considerations, which were based on the trial results, regarding the deployment of lOOGb/s transport systems are introduced, and the requirements of China Mobile for the evo- lution of lOOGb/s transport systems are sum- marized.展开更多
We demonstrate an indoor 5 m free-space optical wireless coherent communication in mid L-band(1606.7 nm)by employing a tunable self-seeded InAs/InGaAlAs/InP quantum-dash(Qdash) laser as a subcarrier generator for ...We demonstrate an indoor 5 m free-space optical wireless coherent communication in mid L-band(1606.7 nm)by employing a tunable self-seeded InAs/InGaAlAs/InP quantum-dash(Qdash) laser as a subcarrier generator for 128 Gb/s dual-polarization quadrature phase shift keying(DP-QPSK) modulation signal. The bare Qdash laser diode displays ~6 nm self-locked Fabry-Perot mode tunability with ~30 dB side mode suppression ratio(SMSR) and ~10 dBm mode power across the tuning range, thus encompassing ~10 modes with an achievable capacity of 1.28 Tb/s(10 × 128 Gb∕s) and potentially qualifying the source requirements for future access networks.展开更多
文摘In recent years, the booming band- width demands of dedicated mobile services have driven the rapid development of optical transport networks (OTNs). Through the in- novative use of emerging coherent optical communication technology and the advance- ment of microelectronics technology, the new-generation 100Gb/s transport technology offers a high line rate and unprecedented re- silience to optical transmission impairments. This paper overviews the bandwidth demands of China Mobile driven by the upcoming roll- out of Time Division-Long Term Evolution (TD-LTE) and presents the 100Gb/s trials at China Mobile that were used to verify the performance of a lOOGb/s system. China Mo- bile's considerations, which were based on the trial results, regarding the deployment of lOOGb/s transport systems are introduced, and the requirements of China Mobile for the evo- lution of lOOGb/s transport systems are sum- marized.
基金supported in part by King Fahd University of Petroleum and Minerals through the KAUST004 grantin part by King Saud University,Deanship of Scientific Research through the RG-1438-092 grantin part by KACST-TIC in SSL
文摘We demonstrate an indoor 5 m free-space optical wireless coherent communication in mid L-band(1606.7 nm)by employing a tunable self-seeded InAs/InGaAlAs/InP quantum-dash(Qdash) laser as a subcarrier generator for 128 Gb/s dual-polarization quadrature phase shift keying(DP-QPSK) modulation signal. The bare Qdash laser diode displays ~6 nm self-locked Fabry-Perot mode tunability with ~30 dB side mode suppression ratio(SMSR) and ~10 dBm mode power across the tuning range, thus encompassing ~10 modes with an achievable capacity of 1.28 Tb/s(10 × 128 Gb∕s) and potentially qualifying the source requirements for future access networks.