Serpentinites have great implications for the oceanic crust, subduction zones, island arc magmatism activity, and the formation of nickel ore deposits. To further determine the mechanism of magnetic property changes o...Serpentinites have great implications for the oceanic crust, subduction zones, island arc magmatism activity, and the formation of nickel ore deposits. To further determine the mechanism of magnetic property changes of serpentinites, samples from ODP Holes 897 D and 1070 A were investigated by integrating both magnetic and non-magnetic methods. Detailed rock magnetic results demonstrate that magnetite prevails in the entire serpentinite section, while maghemite is present in the upper and altered parts. The concentration of Fe in the fresh peridotite is inhomogeneous; nonetheless, the magnetic properties are generally determined by the serpentinization process. The formation and state of the magnetite depend on the fracture conditioning and fluid activities which are controlled by the serpentinization process. By comparing these two holes, we found that the production of magnetite is consistent with the serpentinization process; serpentinization is a multi-stage process which involves early high-temperature serpentinization and later low-temperature oxidation. As the serpentinization continues, the fine magnetic particles become coarser, combined with the formation of new SP particles, and the later low-temperature oxidation leads to the maghemitization of the magnetites. The duration of oxidation also contributes to the differences of remanent magnetization between these two holes. These results greatly improve our understanding of the magnetic enhancement during the serpentinization process, and provide constraints on the interpretation of the paleomagnetic and aeromagnetic anomalies in this area.展开更多
A new phenomenological and empirically-based constitutive model was proposed to modify the term in the original Johnson−Cook constitutive model.The new model can be used to describe and predict the flow stress of AA10...A new phenomenological and empirically-based constitutive model was proposed to modify the term in the original Johnson−Cook constitutive model.The new model can be used to describe and predict the flow stress of AA1070 aluminum with different initial grain sizes in the hot working process.This developed model considers thermal softening,strain-rate hardening,strain hardening,initial grain size,and interactions with each other and can correctly model the behavior of AA1070 at elevated temperature with different strains,strain rates,and initial grain sizes.The hot flow behavior of AA1070 was investigated through compression tests over wide ranges of temperature from 623 to 773 K,strain rate from 0.005 to 0.5 s−1 and initial grain size from 50 to 450μm.Results show that the initial grain size has a significant effect on the flow behavior of AA1070.Then,correlation coefficient(R),average absolute relative error(AARE),and relative error were examined for comparative predictability of the model.Results show that flow stresses for different initial grain sizes calculated by the new proposed model perfectly correlate with experimental ones,with a mean relative error of 1.19%,which confirms that the new modified Johnson−Cook relation can give a precise estimation of the hot flow stress of AA1070 aluminum by considering the initial grain size.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41430962,41374073)the support from the Chinese Academy of Sciences
文摘Serpentinites have great implications for the oceanic crust, subduction zones, island arc magmatism activity, and the formation of nickel ore deposits. To further determine the mechanism of magnetic property changes of serpentinites, samples from ODP Holes 897 D and 1070 A were investigated by integrating both magnetic and non-magnetic methods. Detailed rock magnetic results demonstrate that magnetite prevails in the entire serpentinite section, while maghemite is present in the upper and altered parts. The concentration of Fe in the fresh peridotite is inhomogeneous; nonetheless, the magnetic properties are generally determined by the serpentinization process. The formation and state of the magnetite depend on the fracture conditioning and fluid activities which are controlled by the serpentinization process. By comparing these two holes, we found that the production of magnetite is consistent with the serpentinization process; serpentinization is a multi-stage process which involves early high-temperature serpentinization and later low-temperature oxidation. As the serpentinization continues, the fine magnetic particles become coarser, combined with the formation of new SP particles, and the later low-temperature oxidation leads to the maghemitization of the magnetites. The duration of oxidation also contributes to the differences of remanent magnetization between these two holes. These results greatly improve our understanding of the magnetic enhancement during the serpentinization process, and provide constraints on the interpretation of the paleomagnetic and aeromagnetic anomalies in this area.
文摘A new phenomenological and empirically-based constitutive model was proposed to modify the term in the original Johnson−Cook constitutive model.The new model can be used to describe and predict the flow stress of AA1070 aluminum with different initial grain sizes in the hot working process.This developed model considers thermal softening,strain-rate hardening,strain hardening,initial grain size,and interactions with each other and can correctly model the behavior of AA1070 at elevated temperature with different strains,strain rates,and initial grain sizes.The hot flow behavior of AA1070 was investigated through compression tests over wide ranges of temperature from 623 to 773 K,strain rate from 0.005 to 0.5 s−1 and initial grain size from 50 to 450μm.Results show that the initial grain size has a significant effect on the flow behavior of AA1070.Then,correlation coefficient(R),average absolute relative error(AARE),and relative error were examined for comparative predictability of the model.Results show that flow stresses for different initial grain sizes calculated by the new proposed model perfectly correlate with experimental ones,with a mean relative error of 1.19%,which confirms that the new modified Johnson−Cook relation can give a precise estimation of the hot flow stress of AA1070 aluminum by considering the initial grain size.