对某井Φ88.9 mm×6.45 mm 110S油管断裂事故进行了深入调查研究,分析了4根两两相互匹配的断裂油管样品,对断口形貌、管体几何参数、理化性能、金相组织和腐蚀产物等进行了试验分析。结果表明:Φ88.9mm×6.45 mm 110S油管的理...对某井Φ88.9 mm×6.45 mm 110S油管断裂事故进行了深入调查研究,分析了4根两两相互匹配的断裂油管样品,对断口形貌、管体几何参数、理化性能、金相组织和腐蚀产物等进行了试验分析。结果表明:Φ88.9mm×6.45 mm 110S油管的理化性能均满足API Spec 5CT标准及用户要求;油管断裂机理为H2S应力腐蚀开裂。建议加强H2S现场检测,选择适合的抗H2S油管。展开更多
The corrosion behavior of the 110S tube steel in the environments of high H2 S and CO2 content was inves- tigated by using a high-temperature and high-pressure autoclave, and the corrosion products were characterized ...The corrosion behavior of the 110S tube steel in the environments of high H2 S and CO2 content was inves- tigated by using a high-temperature and high-pressure autoclave, and the corrosion products were characterized by scanning electron microscopy and X ray diffraction technique. The results showed that all of the corrosion products under the test conditions mainly consisted of different types of iron sulfides such as pyrrhotite of Fe0.95 S, mackinaw- ite of FeS0.9, Fe0. 985 S and FeS, and the absence of iron carbonate in the corrosion scales indicated that the corrosion process was controlled by H2S corrosion. The corrosion rate of the 110S steel decreased firstly and then increased with the rising of temperature. The minimum corrosion rate occurred at 110 ℃. When the H2 S partial pressure PH2s below 9 MPa, the corrosion rate declined with the increase of PH2s. While over 9 MPa, a higher PH2s resulted in a faster corrosion process. With the increasing of the CO2 partial pressure, the corrosion rate had an increasing trend. The morphologies of the corrosion scales had a good accordance with the corrosion rates.展开更多
With the exploitation of high sour and deep oil well in china,the corrosion medium containing CO 2,H 2 S,Cl-and organic acid threaten the safety of oil equipment and tube steel severely.In this article,many experiment...With the exploitation of high sour and deep oil well in china,the corrosion medium containing CO 2,H 2 S,Cl-and organic acid threaten the safety of oil equipment and tube steel severely.In this article,many experiments,including corrosion tests,tensile tests,hydrogen concentration measurement tests and SEM examinations,were performed to investigate the effect of H 2 S partial pressure and loading stress on the mechanical property of oil tube steel P110S in high temperature and high pressure environment containing H 2 S/CO 2.The tensile strength and yield strength during fracture process of P110S steel were obtained experimentally and the fracture morphology was analyzed by SEM.The results indicate that both tensile strength and yield strength decreased after corrosion.The damage of tensile strength and yield strength became serious with an increase in H 2 S partial pressure and loading stress.According to the fracture analysis,the fracture mode exhibited quasi-cleavage and dimple mixed fracture,and the area of quasi-cleavage pattern increased with H 2 S partial pressure and loading stress increasing.According to the results of tensile test and hydrogen concentration measurement test,the tensile property degradation is closely associated with diffusible hydrogen concentration of P110S steel in the H 2 S/CO 2 environment.展开更多
文摘对某井Φ88.9 mm×6.45 mm 110S油管断裂事故进行了深入调查研究,分析了4根两两相互匹配的断裂油管样品,对断口形貌、管体几何参数、理化性能、金相组织和腐蚀产物等进行了试验分析。结果表明:Φ88.9mm×6.45 mm 110S油管的理化性能均满足API Spec 5CT标准及用户要求;油管断裂机理为H2S应力腐蚀开裂。建议加强H2S现场检测,选择适合的抗H2S油管。
基金Sponsored by Key National Science and Technology Specific Projects of China(2008ZX05017-002)
文摘The corrosion behavior of the 110S tube steel in the environments of high H2 S and CO2 content was inves- tigated by using a high-temperature and high-pressure autoclave, and the corrosion products were characterized by scanning electron microscopy and X ray diffraction technique. The results showed that all of the corrosion products under the test conditions mainly consisted of different types of iron sulfides such as pyrrhotite of Fe0.95 S, mackinaw- ite of FeS0.9, Fe0. 985 S and FeS, and the absence of iron carbonate in the corrosion scales indicated that the corrosion process was controlled by H2S corrosion. The corrosion rate of the 110S steel decreased firstly and then increased with the rising of temperature. The minimum corrosion rate occurred at 110 ℃. When the H2 S partial pressure PH2s below 9 MPa, the corrosion rate declined with the increase of PH2s. While over 9 MPa, a higher PH2s resulted in a faster corrosion process. With the increasing of the CO2 partial pressure, the corrosion rate had an increasing trend. The morphologies of the corrosion scales had a good accordance with the corrosion rates.
基金Specialized Research Fund for the Doctoral Program of Higher Education,China(20070425021)the Scientific Research Fund for Returned Overseas Chinese Scholar from Education Ministry of China(No.2008-890)+1 种基金the Natural Science Foundation of China(No.50871122)supported by the Special project on exploration and synthetical matching technical research of overseas oil fields of China National Petroleum Corporation(CNPC)
文摘With the exploitation of high sour and deep oil well in china,the corrosion medium containing CO 2,H 2 S,Cl-and organic acid threaten the safety of oil equipment and tube steel severely.In this article,many experiments,including corrosion tests,tensile tests,hydrogen concentration measurement tests and SEM examinations,were performed to investigate the effect of H 2 S partial pressure and loading stress on the mechanical property of oil tube steel P110S in high temperature and high pressure environment containing H 2 S/CO 2.The tensile strength and yield strength during fracture process of P110S steel were obtained experimentally and the fracture morphology was analyzed by SEM.The results indicate that both tensile strength and yield strength decreased after corrosion.The damage of tensile strength and yield strength became serious with an increase in H 2 S partial pressure and loading stress.According to the fracture analysis,the fracture mode exhibited quasi-cleavage and dimple mixed fracture,and the area of quasi-cleavage pattern increased with H 2 S partial pressure and loading stress increasing.According to the results of tensile test and hydrogen concentration measurement test,the tensile property degradation is closely associated with diffusible hydrogen concentration of P110S steel in the H 2 S/CO 2 environment.