Let F be a non-archimedean local field of characteristic 0 and(?)a nontrivial additive character.Weil first defined the Weil indexγ(a,(?))(a∈F~*)in his famous paper,from which we know thatγ(a,(?))γ(b,(?))=γ(ab,(...Let F be a non-archimedean local field of characteristic 0 and(?)a nontrivial additive character.Weil first defined the Weil indexγ(a,(?))(a∈F~*)in his famous paper,from which we know thatγ(a,(?))γ(b,(?))=γ(ab,(?))γ(1,(?))(a,b)andγ(a,(?))~4 =(-1,-1),where(a,b)is the Hilbert symbol for F.The Weil index plays an important role in the theory of theta series and in the general representation theory.In this paper,we establish an identity relating the Weil indexγ(a,(?))and the Gauss sum.展开更多
文摘Let F be a non-archimedean local field of characteristic 0 and(?)a nontrivial additive character.Weil first defined the Weil indexγ(a,(?))(a∈F~*)in his famous paper,from which we know thatγ(a,(?))γ(b,(?))=γ(ab,(?))γ(1,(?))(a,b)andγ(a,(?))~4 =(-1,-1),where(a,b)is the Hilbert symbol for F.The Weil index plays an important role in the theory of theta series and in the general representation theory.In this paper,we establish an identity relating the Weil indexγ(a,(?))and the Gauss sum.